MEMORIAS CIENTIFICAS Y LITERARIAS.

JEOGRAFÍA FÍSICA.—Del temblor sentido en Alemania el 6 de marzo de 1872.—Comunicación del doctor don Rodolfo A. Philippi.

Después de la descripción clásica del temblor napolitano de 16 de diciembre de 1857 hecha por Mallet, ningún trabajo sobre temblores ha sido recibido por los físicos con mas aplauso que una obra del señor von Leebach, profesor en la universidad de Göttingen, que lleva por título: *Ein Beitrag zu der Lehre von den Erdbeben von Kurt von Leebach, mit 2 Karten und drei Tafeln*, Leipzig, por H. Hassel, 1873. (Contribución a la doctrina de los temblores, por Carlos von Leebach, con dos mapas y tres láminas).

Esta obra se refiere principalmente a un temblor no muy fuerte, que se sintió el 6 de marzo en una extensión bastante grande de la Alemania central, y se distingue a primera vista por la fina crítica y el tino con que su autor ha sabido sacar los resultados de los inútiles datos recogidos en muchos periódicos, que son con frecuencia vagos, exagerados, contradictorios, como es muy natural, siendo que a muchos observadores les falta, en caso de un acontecimiento tan impróvido, la seriedad necesaria, instrumentos de observación, etc., para poder indicar con medida exactitud el tiempo, la fuerza, dirección y efectos de un temblor. A veces el señor von Leebach se muestra desesperado como cuando, queriendo armonizar algunos datos, los encontraba muy contradictorios, para saber cuáles merecían fe, cuáles no; sin embargo, logró sacar en claridad resultados muy importantes. (1)

El área sacudida por el temblor del 6 de marzo de 1872 abarca a lo menos 3100 millas alemanas cuadradas (de a 15 el grado) y forma un elipsoide, cuyo eje mayor está determinado por las ciudades de Beesen y Hechingen, capital de uno de los dos principados de Holbeznollern, y cuyo eje menor determinan Brunswik

---

(1) *The great napolitain earthquake of 1857*. Lond., 1862.
i Chau (en la selva bavara). Es más digno de notarse que otros temblores sentidos en la Europa central tenían casi la misma área; el de julio 29 de 1846, 3348; el de julio 25 de 1855, 3700 leguas cuadradas; el del 15 de enero de 1858 abrazó solo 200 leguas cuadradas.

El temblor que forma objeto del trabajo del señor von Leebach, causó en el tiempo de cinco minutos dos sacudimientos, el primero menos recio, que produjeron un movimiento ondulatorio del suelo. El movimiento estuvo acompañado en una área más reducida, de un ruido subterráneo, que unos observadores comparan a un trueno distante, otros al que produce un coche. Una de las consecuencias más notables fue la de los cambios que se notaron en varios manantiales: algunos se secaron, otros se hicieron manantiales en agua, y aparecieron unas fuentes enteramente nuevas. Se comprende fácilmente, porque los venenos subterráneos que surten las fuentes debían por el movimiento del suelo en muchos casos, estrecharse o ensancharse y aún abrirse nuevos. Dentro de una área limitada, el mortero se cayó de las murallas, se rasgaron casas y el empedrado de las calles, y hasta se cayeron murallas y chimeneas. Los lugares en que estos fenómenos se observaron y en que, por consiguiente, el temblor fue más fuerte, fueron Weimar, Altenburg, Chemnitz y Reichenbach; la región en que las destrucciones por el temblor han sido más graves abarca las ciudades y villas de Ronneburg, Schmölz y Pasterstein. Esta región la llaman el señor von Leebach pleistocástica, del griego pleistos, lo más, y seíso, yo sé eso.

Los observadores divergieron mucho en cuanto a la dirección del temblor, y no pudo ser de otro modo en un movimiento ondulatorio. Como en otros temblores, no se notó en este ningún influencia directa sobre el barómetro; pero se observó, como en otros casos, que los animales estuvieron afectados por él.

El haber aplicado la luz de las leyes de la física al examen de todos estos fenómenos, hace el mérito sobresaliente de la obra que nos ocupa, y que merece tanto más ser reproducida en sus resultados más generales, cuanto que reina en el gran público idea confusa y sin preocupaciones que la antercha de la ciencia debe disipar.

Todas las experiencias hechas hasta el día y las leyes de la mecánica prueban que los movimientos de los temblores y terremotos
no son otra cosa que las oscilaciones sensibles en la superficie, producidas por algún golpe recio en la profundidad. Las bases de la teoría que parte de esta suposición fueron esquemas ya por Julio Schmid, Hopkins y R. Mallet. El último las desarrolló del modo más completo en su célebre trabajo sobre el temblor napoleónico de diciembre 16 de 1857, que mencionó arriba, en el cual trató de determinar el lugar del foco del terremoto, la profundidad de este foco, el centro del sacudimiento notado en la superficie de la tierra, y la velocidad con que se mueven las ondulaciones del terreno en virtud del golpe subterráneo. Para eso se fundó en la dirección e inclinación de las rasgaduras e grietas producidas en los edificios por el terremoto, y demostró que el plano señalado por las grietas principales debe ser perpendicular a la dirección del movimiento ondulatorio. Fijando éste para dos puntos de la superficie por la situación de las rasgaduras producidas, la construcción y un cálculo sencillo dan el foco desde donde nació el terremoto, su distancia de la superficie, o sea, su profundidad, el centro del sacudimiento de la superficie, y la caída de objetos más o menos pesados, mas o menos firmes. Observando su peso, sus dimensiones e el movimiento que experimentaron, da una base para calcular la velocidad y fuerza de cada ondulación.

El señor von Leebach hace plena justicia al mérito sobresaliente del trabajo del señor R. Mallet; pero hace ver que su método adolece, sin embargo, de algunos defectos: el principal es el de no poder ser aplicado en el caso de temblores menos fuertes que no hacen objetos pesados ni parten murallas, como verá gracia, el de 6 de marzo de 1872. Era, pues, preciso buscar para estos otros métodos de determinación, y los halló en la determinación exacta del tiempo en que los movimientos se hacen sentir en diferentes puntos, cuya importancia habrá ya sido señalada por el señor Julio Schmid, en Atenas. Estas determinaciones permiten conocer todos los puntos arriba mencionados, a lo menos con suficiente precisión, y tal como se puede esperar en esta clase de fenómenos. Una exactitud perfecta se podría sólo exigir si el origen del temblor fuese un punto matemático. El señor don Carlos von Leebach ha aplicado este método con toda la perspicacia del verdadero naturalista, y los resultados obtenidos por él prueban que este método es práctico y recomendable, a pesar de muchas observaciones inexactas e insensibles. Las determinaciones no po-
dría tener una precisión matemática por razones muy obvias, pues quehaya coeficientes que serán siempre indeterminables, como los diversos grados de elasticidad de las varias rocas que componen la corteza del globo, el estado de trizadura en que se encuentran, el espesor y yacimiento de las capas, etc.; pero se puede decir con verdad que el trabajo del señor von Leebach señala un gran progreso en un campo tan poco cultivado de la geología mecánica.

Ahora, volviendo al caso especial del temblor del 6 de marzo de 1872, nuestro autor, considerando la costa terrestre como homogénea, supone que las zonas isócronas del sacudimiento están a igual distancia del verdadero centro del temblor, y que todos los lugares que experimentaron el movimiento al mismo tiempo deben estar a la misma distancia del centro superficial. (Llama la línea que une estos puntos homoseísta, de homos, igual, i seí, yo sacudo). Uniendo los puntos de sacudimiento isócrono por una línea, dividiendo ésta en dos partes iguales y elevando lineas perpendiculares en los puntos de división, la sección de estas perpendiculares dará el centro superficial, que sería en el temblor del 6 de marzo un punto situado a 59° 36' 39" de lat. N. i 8° 11' 25" de lon.

El cierto es que estas perpendiculares no se reúnen en un solo punto, sino en el golpe, causa del temblor, ha partido también de un punto matemático sin longitud ni anchura; pero sus intersecciones circunscriben un espacio bastante limitado, en cuyo centro sería el punto indicado.

Por un método gráfico mui sencillo, cuya explicación se halla en el libro citado, pero que no sería del caso reproducir aquí, se puede averiguar también la profundidad del centro del terremoto, la verdadera velocidad de propagación i el momento del primer sacudido. Según esto, la profundidad del foco del temblor del 6 de marzo de 1872 estaría entre 1,91 i 2,91 millas alemanas geográficas, o sea, entre 14,39 i 21,59 kilómetros; sería probablemente 2,42 millas, o sea, 29,850 metros; el sacudimiento primero se verificaba con una velocidad verdadera de 742 metros por segundo, i a las 3 horas, 66 minutos, 9 segundos, tiempo de Berlín. Muin notable es la poca profundidad del foco del temblor, pues se cree generalmente que la causa de estos terribles fenómenos debe hallarse en mayor profundidad. Observo que la determinación del foco del temblor napolitano de 15 de diciembre de 1857 le asigna una profundidad aún menor, es decir, de 11,755 metros en término medio.
Para otros terremotos se hallaron profundidades de 22 a 44 kilómetros: el terrible terremoto de Lisboa de noviembre 1.° de 1755 parece haber tenido su origen en una profundidad de 45 kilómetros no más.

Estamos acostumbrados a medir los temblores según las destrucciones causadas en la superficie; pero esto no es la escala justa para su fuerza verdadera, porque la intensidad del golpe disminuye en razón del cuadrado de la distancia del foco del temblor; así es que, verbi gratia, un lugar será sacudido con una violencia cuatro veces mayor cuando el foco del temblor esté en doble profundidad, siendo la intensidad del golpe la misma. El temblor del 6 de marzo de 1872 ha sido, a pesar de las destrucciones insignificantes que produjo en la superficie del globo, casi tres veces más fuerte que el napolitano, que arrebató la vida a millares de hombres.

Otro resultado muy importante del bello trabajo del señor von Leebach es que el centro superficial estuvo muy distante del lugar que experimentó el sacudimiento más fuerte. La distancia era de 10 millas, o sea, 74 kilómetros. La razón es que el foco verdadero del temblor yacía en una grieta inclinada oblicuamente hacia el centro de la tierra, y que el sacudimiento, siguiendo esta grieta, se desvió lateralmente en su marcha del interior a la superficie.

Este trabajo especial condujo naturalmente al exámen de cuestiones más generales relativas a la naturaleza de los temblores. ¿Cuál es la causa de los temblores? Dejando a un lado varias ideas sostenidas apasionadamente por uno que otro sabio, vemos que la mayoría de los naturalistas está conforme en admitir dos causas de los temblores: una que es un fenómeno volcánico, otra que es la ruptura de masas grandes de la corteza terrestre y su hundimiento en cavidades de ésta. Sería superficial dar las pruebas del origen de la primera clase de temblores; los segundos, que podemos llamar centripetas, al paso que los temblores volcánicos podrían apelatarse centrífugos, no se pueden distinguir con seguridad de éstos por sus efectos; pero no se puede dudar de su existencia. Cada minero conoce los sacudimientos producidos por el hundimiento y el derrumbe de rocas en las minas. Los manantiales, cuyas aguas tienen en disolución sales abundantes, carbonato y sulfato de calcio, cloruro de sodio, etc., que obtienen disolviendo estas sustancias en el interior de la tierra en varias capas,
La influencia necesariamente en el curso de los siglos acuñadas más o menos grandes, y es más que probable que las rocas que forman el techo de estas gentes sustancias se quebraron y salieron a veces. El señor von Leebach describe con profusión el efecto jen-lógico producido en la vecindad de Eisenach por el hundimiento de varias capas del calceo conchifero, en consecuencia de la disolución de un stockwerk de yeso. Las capas del piso quedaron sin alteración; pero las del techo se rompieron en varios pedazos, se hundieron, se disolvieron y formaron muchas grietas. Parece fuera de duda que se podrá llegar a resultados de suma importancia estudiando con cuidado la dirección e inclinación de las grietas y finones. Esto es todavía un campo abriese en la geología; pero podemos esperar que este estudio hecho con método podrá arrojar mucha luz sobre la edad de ciertos soportamientos y desbancamientos, y que se podrán probablemente conocer por estas observaciones, a lo menos en muchos casos, la profundidad y sitio del foco que produjo estos trastornos. Consideramos que será mucho más difícil observar los efectos de éstos, tales como se manifestaron por las rupturas, grietas, finones, etc., al cabo de un tiempo tan largo, que estudiar los producidos por un temblor reciente; pero tal vez los finones metálicos, cuya composición igual parece indicar que han sido formados contemporáneamente, pueden dar indicaciones preciosas para esta cuestión.

Omitió lo que el señor von Leebach dice respecto de los mejores aparatos para observar con exactitud el tiempo en que un temblor se verifica, su dirección, fuerza y duración, porque esto toca a los físicos de profesión, que se ocupan en el estudio de estos fenómenos tan terribles como interesantes; mientras los resultados obtenidos por sus observaciones e investigaciones son del dominio del público general.

(Traducción libre de un artículo del periódico alemán el Ausland, 1873, pág. 341 y siguiente).