EL ARTE DE CONSTRUIR

EN LOS PAÍSES ESPUESTOS A TEMBLORES DE TIERRA

POR EL

conde de Montessus de Ballore

(Traducido del francés)

(Continuación)

15.—Casas japonesas indígenas

La casa japonesa indígena ha sido reputada por muchos seismólogos como espresamente dispuesta para el efecto de resistir a los temblores, entre tanto que otros, como Pownell, Lescasse, Conder, Branton, etc., juzgan esta opinión como mui errónea.

Ellos atribuyen sus disposiciones mui especiales, a la gran facilidad del empleo de la madera que los habitantes tienen al alcance de su mano; la falta de caminos hace al contrario difícil el trasporte de la piedra a gran distancia, en un país donde el hombre desempeña, sobre todo en otro tiempo, el rol de una bestia de carga. Los partidarios de esta habitación creyeron de tal manera en su estabilidad, que, según ellos el solo inconveniente real que ella presenta sería su facilidad de inflamarse, después de los temblores, a consecuencia de la caída de las paredes de papel sobre los fogos-
nes. De hecho este jénero de destrucción ha causado catástrofes tan numerosas como horripilantes. Es así como el 28 de Octubre de 1891 la villa importante de Kasamatsu ha sido completamente reducida a cenizas; que en Gifou 2,225 casas fueron destruidas, i que no se sabrá jamás el número de infelices heridos quemados vivos bajo las ruinas de sus habitaciones, antes de que se haya tenido el tiempo de levantar los escombros. I de cuántos otros desastres de este jénero no ha sido teatro el Japon desde hace siglos; sus anales dan fe de ellos. Es de creer que el horror de estos incendios ha hecho perder de vista que ellos no eran mas que la consecuencia de la caída de los edificios, dicho de otra manera, la inmanidad seísmica de las casas japonesas comunes es absolutamente lejendaria. Los detalles que siguen mostrarán por otra parte que ellas no pueden oponer mucha resistencia a los temblores violentos, aunque para los seismos moderadamente severos lo sean, a causa de su elasticidad, que se ha comparado a la de una jaula o de un canasto ménos espuestos a deterioros que las construcciones vecinas de piedras o ladrillos mediocremente construidas, no teniendo mas que apariencia de solidez.

La casa japonesa se compone esencialmente de una muy ligera armadura de pilotes de madera de cuatro a cinco pulgadas de escuadraje entretelados de manera que se encuentran todos en ángulo recto.

Los pies de los montantes descansan sobre gruesas piedras no talladas a menudo redondas. Los cuadros exteriores están llenos en el medio de cañizo de bambú i todo recubierto de barro. Los tabiques interiores i el techo son de tela o de papel aceitado. La techumbre, mui pesada, se compone de tejas simplemente colocadas sobre arcilla estendida sobre el techo, con recubierta. Las de las aristas están fijas también con arcilla i a veces justapuertas con mortero. Todo este conjunto, demasiado recargado en su parte superior es mui movible; así los temblores de mediana violencia bastan para sacar fuera de quicio los montantes de sus basas de piedra i la armadura queda solamente gondolada, como una silla
desvencijada por la débil caída que de ahí resulta que corresponde a la altura de las piedras sobre el suelo. Es fácil volver a colocar la casa en su lugar y reparar los perjuicios insignificantes que ha soportado, aun en los casos en que la techumbre sea deslizada al suelo bajo la acción del choque. De esta facilidad de reparaciones ha tomado su ori gen la creencia en la inmunidad relativa de la casa japonesa en muchas circunstancias; pero es falsa en los grandes temblo res como lo manifiestan los seismólogos nombrados más arriba y otros más.

Esta mala condición de la casa japonesa, a despecho de todo lo que se ha afirmado tan ligera mente, se demuestra también con las cifras dadas por Omori de los tantos por ciento de las casas volcadas completamente siguiendo los valores máximos de aceleración séismica (en milímetros).

<table>
<thead>
<tr>
<th>%</th>
<th>ACCELERACIÓN MÁXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 3</td>
<td>2,600</td>
</tr>
<tr>
<td>15</td>
<td>3,400</td>
</tr>
<tr>
<td>50</td>
<td>3,900</td>
</tr>
<tr>
<td>80</td>
<td>4,500</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

El significado de este último resultado es que aun con los temblores violentos quedan siempre algunas casas en pie.

Una de las razones que han hecho aparecer la casa japonesa tan resistente a los seismos, a varios observadores, es la de que ellos no han asistido más que a temblores simplemente severos, pero suficientes para agrietar las casas europeas, haciendo creer en una intensidad más allá de la real, mientras que las primeras en razón de su elasticidad, que las ha hecho comparar a cajas de mimbres dadas vueltas, no habían sufrido ninguna avería aparente. Conder ha comparado entonces la manera como se comporta la casa japonesa al ladeamiento de una vieja silla desvencijada; no se podría encontrar una comparación más propia y más sugestiva.
16.—Casas japonesas con armadura de madera i piedras talladas

Los japoneses no se limitan sobre todo desde hace treinta años a las construcciones ligeras de que se acaba de hablar; edifican también casas de armaduras de madera embutidas en bloques de* piedra de dos a tres pies de largo sobre seis a nueve de altura y espesor, unidos a la armadura por ganchos (kasugay) de estremidades vueltas en angulo recto de cinco pulgadas de largo por 0,7 de pulgada de diámetro. Lo más a menudo se emplea una roca volcánica quebradiza i liviana, cualidad necesaria para permitir la penetración de los gauchos; pero con el tiempo estos se oxidan lo que tiende a hacer abrir las piedras ya dañadas por la lluvia i las heladas. Ellas se rasgan i los temblores aun relativamente moderados bastan para desprenderlas de la armadura. Son habitaciones que dan facilmente la ilusión de la solidez, i no tienen, sobre las casas indígenas otra ventaja que quedar exentas del incendio consecutivo al temblor. En el del 15 de Enero de 1887 han sufrido mas que las otras.

17.—Templos japoneses

Los grandes monumentos japoneses, tales como templos, pagodas i aun palacios de otra época, son también construidos con armadura de madera. Se ha hecho ahí un gasto extraordinario de maderas tanto por el número de piezas ensambladas sin reglas bien definidas, como por su enorme grosor. Están colocadas de una manera tan inestribilicte que el todo forma un conjunto muy elástico pudiendo ceder en todas direcciones sin romperse ni volcarse. Así desde hace mucho tiempo, Yamao-Yozo, vice Ministro de Trabajos Públicos, i que llegó a ser una especialidad en el estudio de las construcciones japonesas proclamaba que, a pesar del esfuerzo de los siglos i de los temblores, casi ninguno de estos monumentos mostraban señales de haber sufrido. Estas conclusiones han sido confirmadas por Conder en 1891 i por Omori después del temblor de Sakata el 22 de Agosto de
1894. Esta inmunidad es remarcable en las pagodas sobre todo, de pisos sucesivas o escalonados cuya altura debiera indicar un fácil volcamiento. Es así que Omori cita el caso de Gojunoto de Asakusa, Tokio, cuya considerable altura no ha, como se hubiera podido temer, causando la caída en el desastre seísmico, llamado de Ansei, del nombre del emperador reinante, del 11 de noviembre de 1855 y que no tuvo más daño que la torcedura de su estremidad. Este ejemplo induciría a pensar que la torre de Eiffel fuese capaz de resistir violentos temblores pues la complejidad de su armadura es de un carácter común con las pagodas japonesas e además tiene la ventaja de su ancha base, mientras que en aquellas los pisos, al contrario desbordan su base.

18.—Casas de Calcuta

El temblor de 12 de Junio de 1894 ha causado destrozos demasiado considerables en Calcuta, i sin embargo esta ciudad está al interior del isoseíste VIII de la escala Rossi-Forel i al exterior del isoseíste IX. Hai, pues, alguna particularidad en la construcción de las habitaciones, que debe poder dar cuenta de esta anomalía relativa a las habitaciones inglesas. Lo que se va a decir puede tener aplicación a todo el territorio de la India como lo prueban las observaciones hechas en el temblor de Bengala de 14 de Julio de 1885.

Estas casas presentan una porción central construida de muros sólidos, un techo plano de cemento i pisos-techos de cemento o de mármol en cada piso. Al Sur, se ve un ancho corredor cuyo techo i piso están sostenidos por gruesos pilares de ladrillo, las partes superiores de los intervalos están ocupadas por persianas de madera a la veneziana. Al Norte, un ancho pórtico con o sin salón arriba. Se ha tenido ocasión de señalar el inconveniente de balaustradas de coronación tan frecuentemente empleadas.

Resulta de esta descripción sumaria que la casa está dividida, por dos planos verticales, dirigidos Este Oeste, en tres partes de pesos muy desiguales i de proporciones muy diferentes. No habrá, pues, ciertamente sincronismo en sus movimien-
tos oscillatorios i vibratoriois, i de aquí la tendencia a la sepa-
racion, como se ha tenido ya a menudo ocasión de decirlo.
Esta desunión al ménos momentánea no es solamente una
ilusión sino que ella ha sido realmente observada, i varios
testigos oculares están acordes en estimar su amplitud en
varias pulgadas i su duración en siete u ocho segundos; la
vueeta elástica para poner en contacto las partes separa-
das exije este tiempo. Después del suceso las habitaciones
ménos deterioradas presentaban agrietaduras en el lugar de
los dos planos verticales indicados & en su vecindad. Se ob-
servó también que ahi, donde las vigas principales sostenían
el techo i los cielos, corrían Norte Sur (el séismo venía Este
Noreste, es decir, en la misma direccion que la del corredor)
i en consecuencia hacían su papel de ligazon; los daños eran
menores cuando las vigas de la parte central i principal cor-
rían de Este Oeste, las de la azotea eran dirijidas Norte
Sur. El uso del estuco aumenta mucho los destrozos, a lo
ménos en aparencla, por su facilidad para desprenderse de
los muros, aunque las obras vivas de la casa sean salvadas.

19.—Casas de Birmania

Segun Anquetil los habitantes de la clase baja ocupan
chozas de bambú i los ricos casas de madera. Se conocen
poco los detalles de su construcción, pero se puede deducir
de las informaciones de los viajeros que los desastres seí-
smicos son graves en Birmania, i por consiguiente estas ha-
bitaciones son verosímilmente defectuosas. Sea como fuere,
no habiendo podido los residentes europeos acomodarse en
estas casas se han edificado ahi casas sobre postes o pilotes de
teak justapuestos i recubiertos interior como exteriormente
de una capa de ladrillos o de morrillos. El techo se compone
de una terraza de hórmigon sostenida por fuertes tablones.
Anquetil agrega que se obtiene por este sistema una elasti-
cidad capaz de resistir a sacudidas poco intensas. Es preciso
concluir que ellas no salen indemnes de los grandes temblo-
res, i debe ser así, no pudiendo un muro misto dejar de ser
desorganizado por los diferentes periodos de vibración de los elementos que lo constituyen.

III.—AMÉRICA

20.—Casas de la Martinica

La Martinica es casi el único país que haya aprovechado alguna vez las lecciones del pasado, temblor del 11 de Enero de 1839, y que haya cambiado en consecuencia radicalmente el modo local de construcción, fuera de toda intervención administrativa o gubernamental. Desde esta época no se levanta más en Fort de France, por lo menos, que albanilerías, que no pasan de 4 metros de altura, encima de los cuales no se construye sino un primer piso y un granero por medio de tabiques de madera. En las casas algo cuidadas las murallas del piso del suelo están revestidas de una cubierta con armadura de carpintería.

21.—Casas hispano-americanas

El principal defecto de las casas hispano-americanas es el empleo de ladrillos secados al sol o adobes, cuyo uso se extendió desde Méjico a Chile con los conquistadores españoles. Es el más frágil de todos los materiales, aun cuando se amase la arcilla con la paja y desgraciadamente no ha hecho sino dar prueba de su fácil destrucción. Entre muchos ejemplos se puede citar los temblores del 5 al 10 de Noviembre de 1857, que derribaron a San Salvador en América Central, dejando intactas las aldeas vecinas bien defensivamente construidas de San Juan Nonualco, Analco y San Pedro Peralpan. En definitiva, las murallas caen literalmente formando polvareda, a causa de los temblores aunque sean poco recios.

Existe otra manera de construir los muros que al contrario, presenta a los temblores una resistencia muy satisfactoria y es también empleada en la América española en concurrencia con los adobes. El uso ha sido también importado de las orillas del Mediterráneo. Se introducen profundamente
en el suelo montantes verticales de madera llamados Hor-
cones i sacados de las esencias mas duras i mas inco-
r uptibles. Sobre sus fases interiores i exteriores se cla-
van del uno al otro cañas poco distantes las unas de las otras
i colocadas horizontalmente. Otras veces se les amarra por
medio de lianas. Se aplica en seguida tierra o arcilla en
la pared asi constituida. Se obtienen de esta manera mura-
llas muy elásticas i al mismo tiempo muy sólidas, que se pue-
de en seguida blanquear o recubrir con lleso i aun con plan-
chas. Algunas veces esta pared es doble, es decir, que hai
dos líneas de montantes, formando dos murallas paralelas a
poca distancia una de otra. El intervalo vacio entre ellas es
favorable a la aereacion i a la frescura de la habitacion; pero
da asilo a todos los insectos tropicales.
Esta manera seria perfecta si los montantes estuviesen en-
trelazados i apuntalados, lo que no sucede. Su ensambladura
con las vigas del techo es tambien muy defectuosa. Es po-
esto que los temblores desorganizan con la mayor facilidad
murallas que seria, sin embargo, bien facil hacerlas casi in-
destructibles por los movimientos seismicos.
El espacio asi encerrado no forma mas que la mitad o las
dos terceras partes de la superficie de la habitacion. En efecto,
sobre dichos montantes descansen vigas horizontales perpen-
diculares a la mayor dimension del rectangulo i que se prolon-
gan al exterior. Sus estremidades descansen en punta i talla
sobre la cumbre de pilares o de columnas de madera cuyo pie
entalla tambien sobre piedras; rara vez acompanadas de el-
mientos de albanileria. Estos pilares forman una linea para-
lela a la fachada i se obtiene asi un espacio cubierto, o ve-
randah (corredor) bajo el cual pasan los habitantes la mayor
parte de la existencia. A menudo, todo un espacio rectangu-
lar esta rodeado de cuatro canones de piezas unidos, cuyos
departamentos se abren sobre el corredor jeneral que da la
vuelta por el interior. Esta disposicion, evidente reminiscencia
de la habitacion romana, tiene muchos atractivos en los pa-
ises calidos.
En las ciudades, i sobre todo al rededor de las plazas pú-
blicas, hai corredor interior para los habitantes de la casa y corredor exterior para el público, permitiendo este último circular delante de los almacenes al abrigo de la lluvia i del sol, lo que basta a dar un aspecto muy original y muy interesante a las ciudades de la América española; pero el equilibrio de estas casas de doble corredor es más inestable. Las vigas horizontales parten pues de los montantes de la fachada exterior, descansan sobre los de la fachada interior y terminan sobre los pilares del corredor. El sistema es muy inestable, puesto que no se establecen ligaduras entre las vigas y los montantes, y porque las ensambladuras en punta i talla ejecutadas, salga como saliere, no resisten a la menor componente del movimiento seísmico. Se suprime a menudo toda sablière, de suerte que toda ligazón horizontal desaparece también en el sentido de la fachada. Los tijerales de techo muy primitivos, a veces sin tirantes ni carriolas, no están entonces ligados entre ellos mas que por las cuñas horizontales clavadas o adheridas por medio de lianas, que sostienen las tejas.

Nos hemos estendido un poco sobre estas habitaciones, porque salvo algunas variantes locales de detalle, ellas se emplean en toda la enorme superficie de la América española. La incuria con que se las construye es tanto mas culpable cuanto que seria muy fácil, estudiando i efectuando cuidadosamente las ligaduras, hacerlas casi al abrigo de los temblores. Es esto tan cierto que se podría citar muchas iglesias que han resistido a violentos temblores, a pesar de su grande altura, porque las ligaduras estaban ahí bien ajustadas i ejecutadas convenientemente. J. Douglas (Journey along the West coast of South América; Journal of the R. geogr. Soc. T. X) cita sobre el particular muchos ejemplos en el Ecuador.

22.—Casas de Cliffs Dwellers de Nuevo Méjico

A objeto de no omitir nada sobre el arte de construir en los países espuestos a temblores, es que se dirá algunas palabras sobre las casas de esta civilización estinguida. Según
de Nadaillac sus muros de tierra presentan aquí i allá gruesos rodillos horizontales i verticales no ensamblados, destinados, dice él, a asegurar la estabilidad contra los temblores. Se ha visto ya análoga disposición en Metelin i se ha tenido ahí la ocasión de señalar la inanidad de un sistema que destruye la homojeneidad de un muro ya bien débil por sí mismo. En cuanto a los Cliffs Dwellers, habitaban un país seísmicamente estable, de suerte que el propósito de poner resistencia a los temblores no habría podido ser más que un recuerdo llevado de un país de donde ellos habrían emigrado. Es también dudoso que los habitantes de Metelin hayan tenido el mismo pensamiento, apesar de los sísmos que ellos experimentan. Esta identidad de procedimientos resulta simplemente de la identidad de materiales disponibles en ambos pueblos.

IV.—OCEANÍA

23.—Casas de las Filipinas

La casa más comúnmente construida en las Filipinas por la población criolla no tiene muro de albañilería mas que para el piso del suelo. El primer piso está constituido por una armadura de madera propia cuyos montantes descansan sobre una carriola que corona el muro, o bien, que, atravesando verticalmente el muro, se entierran en el suelo. En este segundo caso el peligro es grande, porque, como siempre, la falta de sincronismo de las oscilaciones i vibraciones provoca la desorganización de la albañilería. La armadura sirve también para sostener por un lado los pesados corredores esteriores. Fué difícilmente imaginar un dispositivo mas peligroso, i esto se concibe sin dificultad. También la comisión militar de examen de los daños del temblor del 3 de junio de 1863 ha condenado formalmente estos corredores. Mas tarde, el teniente coronel Cortes, no atreviéndose a ir contra los hábitos inveterados de la vida criolla, se contentó con mejorar el sistema con disposiciones convenientes
de la armadura que todo constructor podría imaginar—es por esto que se las deja en silencio—i con hacer sostener estos corredores por medio de pilares que tienen sus cimientos propios. Los temblores de los días 17 i 20 de Julio de 1880 han mostrado la insuficiencia de paliativos en la destrucción de un elemento de construcción que debe suprimirse.

Las chozas indígenas, construidas de bambú y de montantes verticales enterrados en el suelo, resisten relativamente bastante bien, a causa de su ligereza e de su elasticidad, así el 21 de Setiembre de 1897, en Zamboanga (Mindanao) ellas quedaron en pie al lado de las habitaciones criollas derribadas. Pero, sin embargo, en los temblores mas violentos, los montantes son como espulsados del suelo por el movimiento vertical, mientras que el movimiento horizontal en todos los azímetros obra de tal suerte que produce un agujero cóncico semejante al que podría producirse haciendo jirar un bastón en la arena mojada o en la tierra. Esto es lo que se ha observado por ejemplo en la iglesia de Jaen (Nueva Ecija el 20 de Julio de 1880).

CAPITULO VIII

EFECTOS DE LOS TEMBLORES DE TIERRA SOBRE DIVERSAS CONSTRUCCIONES DISTINTAS DE LAS HABITACIONES

I.—Derrumbe i ruptura por los temblores de tierra de construcciones elevadas

II.—Rotación y resbaladura de objetos planos a causa de los temblores

9. Tumbas y otros objetos expuestos a la rotación y resbaladura o deslizamiento.

III.—Construcciones diversas accesorias

Se ve que en este capítulo se trata principalmente de construcciones cuya gran altura con relación a la base, o su forma plana exponen respectivamente a la ruptura y al derrumbe o a la rotación y al deslizamiento bajo la acción de los temblores. Sin entrar en el desarrollo de consideraciones teóricas, será sin embargo, preciso esponer las nociones necesarias reducidas al minimun, pero apresurándose a someterlas al control de la observación de los hechos y de las experiencias japonesas.

I. DERRUMBE Y RUPTURA POR LOS TEMBLORES DE CONSTRUCCIONES ELEVADAS

1.—Ecuación fundamental de estabilidad y experiencias japonesas

El problema del derrumbe i de la ruptura por choque sésmico de un objeto o de una construcción de gran dimension vertical con relación a la base es muy difícil i no ha sido todavía abordado teóricamente de una manera completa por la mecánica racional. Es pues, perfectamente inútil esponer teorías de ensayo, destinadas a desaparecer; y que no son mas, que aproximaciones. Bastará pues esponer los principales resultados, suficientes para la práctica del arte de construir en países espuestos a temblores. Como lo ha hecho ver Omo- ri, la cuestión se simplifica mucho haciendo ciertas hipótesis
sobre los tamaños relativos de las dimensiones de las columnas, porque para simplificar el discurso se empleará esta designación para todas estas construcciones, i por otra parte sobre el valor de la amplitud del movimiento seísmico. Vamos a dar suseitamente la teoría de este sabio seismólogo.

Los japoneses han clasificado desde largo tiempo los movimientos seísmicos según el tamaño de sus amplitudes. Un temblor es débil o ligero si esta amplitud (completa) no pasa de 1 mm.; es fuerte cuando ella se acerca a 10 mm.; mas allá de 50 mm. es violento; las construcciones de ladrillos son entonces seriamente perjudicadas; hacia 200 mm. el temblor se hace destructor. Para los temblores débiles la vibracion principal tiene un periodo de 1 segundo; pasa 1 a 2 segundos para los mas violentos.

Si se considera una columna cuya altura sea mucho mas grande que el espesor, el movimiento seísmico podrá ser considerado como obrando por impulsion sobre la base de la columna, i de aqui la tendencia al derrumbe por rotacion alrededor del centro de percusion de la base. La hipótesis relativa a las dimensiones de la columna equivale virtualmente a decir que su período de balanceo, si se la considera como un péndulo invertido, es mucho mas largo que el del movimiento seísmico. De aqui se sigue que columnas de dimensiones mucho menores podran, sin embargo, ser consideradas como columnas de grandes dimensiones, teniendo en vista los temblores de muy cortos periodos.

Sean:

2 y la altura de una columna rectangular.

2 x el lado de la base perpendicular a la direccion del movimiento seísmico.

2 a la doble amplitud de este movimiento precisamente necesario para traer el derribo de la columna; se tendrá la ecuacion fundamental de estabilidad:

$$2a \frac{x(x^2 + 4y^2)}{3y^2}$$
El valor de a no depende, pues, mas que de la relacion de y, con x' i aumenta naturalmente con el valor de x.

Esta ecuacion se convierte en:

$$2 a = \frac{c k^2}{y^x}$$

para una columna que tiene un eje central i un radio de juracion k, con relacion a su base.

Las aplicaciones numericas de estas fórmulas muestran que ningun cuerpo que tenga la forma de una columna, es decir, cuya altura sea al menos cuadruple de la dimension en el sentido del movimient seismico, no es susceptible de ser derribado por un temblor porque se llega a valores de a que estos fenómenos no alcanzan jamas. Como ejemplo de observaciones conformes a esta imposibilidad teorica, se puede citar los Goyûnotós i los Sanjûnîtós, pagodas de madera de cinco i tres pisos con balcones, respectivamente, los Hinomiyaguras o torres para campanas de incendio o de templo. Estas construcciones, aunque simplemente colocadas sobre bloques de piedra, no podrian, sin embargo, ser derribadas sino en el caso de que los cimientos cedieran. Los temblores no les afectan sino muy poco, por que son construcciones sólidas del todo comparables a un cuerpo simple, o block, i muy diferentes de las casas ordinarias cuya construccion es tan heterojénea. En particular estas pagodas son de tal manera indestructibles que el pueblo japonés piensa generalmente que hai en su construccion algun misterio religioso que los coloca al abrigo de los temblores. La principal razon esta en que estos no poseen jamas la amplitud que seria necesario para derribarlos. Se puede citar tambien el Gojunoto de Asakusa por una parte, el de Nagoya i los Sanjûnîtós de Nagoya i de Hiyoshi en Gôdo por otra, que los desastres de 1855 i 1891 dejaron en pie en medio de ruinas, asi como la torre de las campanas del templo Anjôji, que respeto el gran temblor del Shônai del 22 de Octubre de 1894.
Las fórmulas de Omori, en la hipótesis de que el período del movimiento no es muy corto con relación al de oscilación de la columna se convierten en la ecuación llamada de West.

\[a = \frac{g x}{y} \]

donde \(y \) es la altura del centro de gravedad de la columna sobre la base, \(2X \) la distancia horizontal de este centro de gravedad al ángulo o la arista del cuerpo alrededor del cual el cuerpo podría jirar, \(a \) el menor valor de aceleración sísmica que permite el derrumbe de la columna.

Pero bien desgraciadamente las columnas no están sometidas mas que a un esfuerzo de desplazamiento o para hablar exactamente de un descenso sobre el plano horizontal, al cual, como se acaba de ver, ella resiste siempre.

Como ellas están puestas en movimiento pendular de oscilación, si la amplitud de ésta es demasiado grande para la elasticidad que aquellas poseen habrá ruptura. Este efecto es a menudo seguido de la caída de toda la columna o de algunas de sus partes, i es viendo los fragmentos arrojados en tierra que ha podido crecerse en el derrumbe.

Los seismólogos japoneses han establecido para el fenómeno de la ruptura, fórmulas, cuyas aplicaciones prácticas han sido sometidas por ellos mismos al control de la experiencia. Para esto han fijado columnas de ladrillos que difieren entre ellas de todas las maneras posibles, en dimensiones, formas, aparejos, naturaleza de materiales, etc., sobre una mesa, cuyo nombre mismo, «Mesa para choques» basta a indicar su empleo. Se reproduce pues, sobre estas columnas diversas e experimentalmente todos los efectos de los temblores de tierra por medio de choques de intensidades i de aceleraciones variadas, producidos mecánicamente, correspondiendo al suelo la mesa misma.

La aceleración i todas las particularidades del movimiento comunicado son registradas por medio de seismógrafos espe-
ciales, de suerte que se puede juzgar inmediatamente del acuerdo entre las fórmulas i los efectos producidos. Son estos resultados concordantes de la teoría i de la experiencia que vamos a resumir sumariamente.

Sean:

W el peso de la columna.

f' la altura de su centro de gravedad.

a la aceleración del movimiento seísmico:

El momento del par de flexión es:

$$M = \frac{f' a W}{g}$$ \hspace{1cm} (1)

Sean ahora:

a la amplitud del movimiento seísmico.

T su período.

Si se desprecia la fuerza

$$a \frac{W}{g}$$

delante del momento de flexión la aceleración a variará de cero a su máximo.

$$\frac{4 \pi^2 \alpha}{T^2}$$

Considerando ahora en la ecuación (1) a como indicando la aceleración máxima, entonces el máximo de M dará el valor del poder fracturador del movimiento seísmico.

Si se examina el caso de una columna que tiene un eje, es decir, cuyos centros de inercia de las secciones horizontales estén en línea recta, se tiene:

$$P = \frac{M}{I} \quad x = \frac{x f' a W}{I g}$$

donde

x es la distancia de un punto al eje.
el momento de inercia de la sección horizontal que pasa por ese punto con relación a la intersección de esta sección con la superficie neutra.

P la tensión longitudinal o la presión en ese punto; se ve que P es proporcional a x e tiene su máximo por \(x = x_o \cdot 2x_0 \) siendo el espesor de la columna. Este máximo de P es igual a

\[
\frac{f}{a} W x_o
\]

Si P es bastante grande e igual a la resistencia F de la columna a la tensión, la columna se fracturará y se tendrá:

\[
F = \frac{f}{a} W x_o
\]

de donde:

\[
a = \frac{1}{x_o} \int W \, x = \frac{1}{x_o} \int W \, x
\]

donde V es el volumen de la parte fracturada encima de la sección de ruptura y w el peso de la columna por unidad de volumen.

Los valores de los momentos de inercia permiten calcular \(\alpha \) para todas las formas de secciones de las columnas cilíndricas.

Sección cuadrada del lado \(2x_o \):

\[
a = \frac{2gF}{3w2x_o^2}
\]

Sección cuadrada hueca, de lado exterior \(2x_o \) e interior \(2x_i \):

\[
a = \frac{2gF(x + x_o^2)}{3w x_o 2x_i^2}
\]

Tomo CXX
Sección rectangular de espesor x_0 en la dirección del movimiento sísmico y de dimensión b en la dirección perpendicular:

$$a = \frac{2gF x_0}{3w2T^2}$$

y así enseguida.

Las secciones rectangulares i cuadradas dan naturalmente el mismo resultado para una misma dimensión en el sentido de la dirección del movimiento sísmico.

Numerosas experiencias se hicieron para determinar F, la que, en igualdad de mezcla, varió de 35.7 a 130.4 libras por pulgada cuadrada (medidas inglesas) es decir, en límites considerables según la naturaleza de los ladrillos. F varió al contrario muy poco según las dimensiones de los ladrillos, ni según el aparejo empleado, juntas horizontales solamente o junturas horizontales e verticales.

Hai lugar a distinguir si el efecto fracturador en la mesa para temblores es aplicado impulsivamente o gradualmente, lo que se distingue según que la aplicación de la fuerza produce o no vibraciones en la columna, o lo que es lo mismo si ésta aplicación de la fuerza termina o no en un tiempo muy corto con relación al periodo de vibración de la columna considerada como un cuerpo elástico.

No constituyendo los ladrillos un cuerpo perfectamente elástico, se sigue que la ruptura se produce desde que la tensión debida al movimiento pendular de oscilación sobrepasa el límite de elasticidad. En estas condiciones la resistencia de una columna de ladrillos contra un esfuerzo aplicado impulsivamente es la mitad de aquella contra un esfuerzo aplicado gradualmente.

En la ecuación de estabilidad sísmica la aceleración a debe ser considerada como aplicada gradualmente de manera que F es la resistencia del ladrillo a la tensión y no a su mitad, puesto que en los casos de temblores destructores el período de 1 a 2 segundos es ciertamente mucho más largo que el comunicado a la máquina de ensayo.
De una manera general, las experiencias han mostrado que la lejitimidad del empleo en la práctica, de la ecuación de estabilidad. Se notará que la estabilidad seísmica de una columna de sección uniforme es directamente proporcional a \(2X_0 \) e inversamente proporcionada al cuadrado de \(2f \). Parece pues que una columna muy alta sea incapaz de resistir a la ruptura por fuerte movimiento seísmico i es lo que se ha observado en los terremotos.

De otro lado la aceleración necesaria a la ruptura es proporcional a \(F \), resistencia del ladrillo a la tensión, que las experiencias han mostrado ser prácticamente igual a la de la mezcla de las junturas. Se podrá pues, según las necesidades disminuir el espesor de una construcción de ladrillos empleando una mezcla mejor, conservando en todo la misma estabilidad seísmica.

Omori ha construido el gráfico de la relación entre la altura \(2y_0 \) de la columna encima de la sección de ruptura y la aceleración fracturante, suponiendo corresponder ésta a una resistencia \(\frac{100A}{f^2} \) de los ladrillos empleados. Se vé ahí que \(A \) aumenta muy rápidamente con \(2f \).

Las ecuaciones precedentes muestran que una columna hueca es más resistente que una llena o maciza, si, en todo caso, su espesor \((X_0 - X_1) \) es bastante grande para que la ecuación de estabilidad resulte lejítima.

De que \(a \) no dependa sino de la relación \(\frac{x}{y} \), resulta su independencia de la materia de la columna, de suerte que la aceleración necesaria para el derrumbe será la misma para el fierro, la madera, la piedra, el ladrillo, etc., i esta conclusión ha sido confirmada en las experiencias de la «mesa para choques».

Estas ecuaciones fundamentales permitirán a todo constructor poner al abrigo de los terremotos los edificios de grande altura con relación a la base, puesto que podrá deducir de ellas la dimensión que les corresponde i la resistencia a la ruptura que deberá exigir de los materiales.
2. — Chimeneas de fábricas. Sistema Diak

Conforme a lo que precede, no se conoce ejemplos de chimeneas derrubadas, por descenso se entiende, en los temblores de tierra aun en los mas violentos. Es que, según la fórmula de West, serían necesarias aceleraciones que no han sido jamás observadas. Sucedía muy de otro modo en cuanto a la ruptura. El cuadro siguiente ha sido formado por Tanabe i Mano después del estudio de las chimeneas más o menos perjudicadas en Osaka cuando el gran temblor del 28 de Octubre de 1891:

<table>
<thead>
<tr>
<th>Altura en pies</th>
<th>Número total de las chimeneas</th>
<th>Número de las chimeneas deterioradas</th>
<th>% de las chimeneas deterioradas</th>
</tr>
</thead>
<tbody>
<tr>
<td>101—150</td>
<td>10</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>81—100</td>
<td>18</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>61—80</td>
<td>44</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>46—80</td>
<td>90</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>30—45</td>
<td>68</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>TOTALS</td>
<td>230</td>
<td>53</td>
<td>23</td>
</tr>
</tbody>
</table>

Constatando estos observadores que el número de las chimeneas perjudicadas no es proporcional a la altura, concluyen que existe una altura crítica i se preguntan si los daños no tendrán su parte en la vibración elástica de las chimeneas mismas.

Sea como fuere, estas chimeneas estaban todas rasgadas un poco arriba de la mitad de su altura, i los daños en la parte inferior eran muy raros. Igual observación ha sido he-
echa con ocasión de otros temblores, como los de Assam del 12 de Junio de 1897 i del Japon de 20 de Junio de 1894. Para este último temblor Omori constató que once chimeneas satura-
mente habían perdido su coronamiento sobre cuarenta i nueve deterioradas, i que, lo mismo que en Osaka, la porción caída yacía a una distancia enteramente variable i sin relación con la altura de la chimenea, esclayendo así todo fenómeno de proyección. Estas cuarenta i nueve chimeneas deterioradas le estaban al partir de una altura que varía entre los 24 i los 94 centésimos de la altura, sea un término medio de 67 centé-
simos. De estos hechos Omori ha deducido que el punto mas débil, probablemente hablando, estaba en esta última altura, i que es a partir de ahí que las chimeneas comienzan a agrie-
tarse, después a quebrarse si estas grietas las debilitan sufi-
cientemente. Para una chimenea cilíndrica de los diámetros exterior e interior d_2 i d_1, respectivamente, la ecuación de estabilidad es:

$$a = \frac{\pi g (d_2^4 - d_1^4)}{32 d_2 f w V}$$

Trasportando a esta fórmula los valores prácticos de las cantidades que entran en ella, se puede concluir que ninguna de las chimeneas de fábrica actualmente construidas es capaz de resistir a los temblores de aceleración destructiva. Este resultado es muy interesante, porque conduce a buscar un paliativo en otra parte fuera de sus dimensiones. Es a Diak a quien se debe esta invención. Tres que él había edifi-
cado quedaron en pie en medio de sus vecinas derribadas el 16 de Abril de 1890 en Yokohama.

En lugar de buscar la rijidez por medio de círculos de fie-
rrro, llusorio paliativo, amenudo empleado, adaptó a éstas un injenioso sistema de ligaduras longitudinales de fierro, que le permitieron obtener una gran elasticidad transversal. El 20 de Junio de 1894 una chimenea de una fábrica de algodon de Kanegafuchi (Tokio), alta de 50 metros i con diámetros interior i exterior en la base de 4 i 5 metros, establecida se-
gun esta disposición, no sufrió más daño que la cortadura de una sola de estas ligaduras longitudinales.

Otras veces el fierro ha sido empleado con exclusión de la albanilería de ladrillos más arriba de la mitad o de los \(\frac{2}{3} \) de la altura. Si nos referimos a las observaciones de Osaka precedentemente relatadas, sería preciso, para tener toda seguridad, emplear el fierro a partir de los 24 centésimos a lo menos.

Si se emplea la albanilería sola, Milne es de opinión que el único medio de oponerse a la destrucción de las chimeneas de fábricas, aparte del sistema Diak, parece ser la aplicación de los principios fijados para los machones de puentes de perfil parabólico, la reducción del peso de la cumbre, el empleo de ladrillos huecos e una base mucho más ancha. Pero parece poco probable que estos medios basten a paliar los efectos de los temblores violentos.

Un ingeniero japonés a quien se le reprochaba la caída de una chimenea que él había construido y que había sido completamente derribada a causa, se decía, de la mala calidad de la mezcla empleada, se defendió respondiendo que con una mejor mezcla, la chimenea, en lugar de caer en un montón de ruinas al rededor de su base, se habría fragmentado en gruesos bloques cuya caída habría sido mucho más perjudicial para las casas de abajo. La imposibilidad para estas chimeneas de resistir a los temblores hace su respuesta mucho más conforme a la realidad que lo que él mismo creía probablemente.

Teóricamente pues una chimenea de fábrica debería tener la forma parabólica de revolución que se estudiará a propósito de los machones de puentes. Serían cuerpos puntiagudos enredados por la revolución de un arco de parábola al rededor de un eje vertical paralelo al suelo, pero exterior a la curva. La enormidad del consumo de materiales, la estranchez de la forma y el tamaño del espacio perdido en la base, impidieron probablemente siempre adoptar esta forma que el sistema Diak parece reemplazar ventajosamente.

La torre Eiffel presenta una forma general parabólica es-
teriormente. Es una nueva razón que se agrega a la ya indicada para su indestructibilidad por los temblores.

3. — Campanarios i torres: cúpulas, cruces i para-rayos

En los grandes temblores la destrucción de los campanarios de iglesias alcanza proporciones considerables. Esto tiene por causa muy a menudo el no sincronismo de sus movimientos oscilatorios i vibratorios con los del edificio principal, i también a menudo, como lo hace notar el arquitecto Kauser a propósito de la iglesia de los Franciscanos en Agram el 9 de Noviembre de 1880, la desigual repartición del peso de la madera que soporta las campanas sobre los muros del campanario. Esta carpintería deberá pues estar repartida igualmente sobre los cuatro muros o en el caso de un campanario circular sobre toda su periferia i en todos los casos estar sólidamente arraigada al resto de la construcción.

La mejor solución, desgraciadamente poco estética, es verosímilmente la que se encuentra frecuentemente en Italia, la independencia entre el campanario i la iglesia. Mallet cita el ejemplo del de Atena torre cuadrada de 90 pies de altura sobre 22 de base, que el 16 de Diciembre de 1897 quedó en pie en medio de esta aldea completamente desvastada.

Se ve a menudo en las pequeñas iglesias la campana soportada por una cúpula sobre el muro de la portada de entrada. He ahí una disposición irremediablemente consagrada a la destrucción, como por otra parte lo prueba bien la observación. El peso relativamente considerable de la campana, su posición peligrosa en la cumbre de un pináculo elevado i en fin su movilidad bajo la acción del movimiento sísmico, bastan a asegurar su pérdida. El temblor del 19 de Diciembre de 1899 en Akhalkalaki dió de ello numerosos ejemplos.

Parece según los hechos observados que los campanarios circulares i las torres resisten bastante bien a los temblores, sobre todo cuando están aislados, aunque no se puede alegar ninguna estadística precisa a este respecto. Pero, a priori
debe ser así, puesto que si la bóveda de eje horizontal es un
deplorable elemento de construcción contra los temblores, no
es lo mismo si su eje es vertical, obrando entonces el esfuerzo
génesis precisamente en el sentido para el cual se la cons-
truyó, es decir, normalmente a sus estrados i hacia el inte-
rior, como la pesantez para una bóveda de eje horizontal.
Es tan cierto que una gran bóveda de arco completo o lleno
de un convento de la Antigua Guatemala, muy inclinado des-
de los temblores de 1607 que hicieron ceder sus pie derechos,
ha resistido perfectamente, desde que tiene esta posición, a
todos los numerosos y violentos temblores de tierra posterio-
res, i mai particularmente al del 29 de Julio de 1773.

Si los campanarios se derriban con una desoladora facili-
dad, i Walmer ha dado para el temblor crónica del 9 de No-
viembre de 1880 un gran número de ejemplos cuidadosa-
mente estudiados i detallados, se concibe sin dificultad cuánto
mas numerosas son todavía las rupturas de las cruces que
sobrellevan en razón de la amplitud exagerada del movi-
miento gádálico en su cumbre. La piedra debe ser rigu-
rosamente proscripida para la erección en los países sometidos a
temblores. En cuanto a las de metal, fierro o de preferencia
acero, bastará ligarlas con el mayor cuidado a la carpintería
del campanario i los medios apropiados no faltan.
En estas condiciones ellas evitarán el ser falsadas o que-
brantadas en su solidez, bastando la elasticidad del metal
para salvarlas de la destrucción.

Los para-rayos de los edificios importantes se encuentran
exactamente en las mismas condiciones defectuosas de las
cruces, i los mismos medios preventivos serán empleados.
Existe, sin embargo, un jénero de daño que citar i que
Walmer con motivo del mismo temblor de Agram, señala en
el para-rayo de la torre de la Iglesia de Zlatac, a saber: la
disjunción entre el tronco i la punta.

Los constructores tendrán que recordar este hecho.
4. — Machones de puente

Los seismólogos japoneses han estudiado muy atentamente la manera como han sido destruidos sus puentes de ferrocarriles en las provincias centrales el 28 de Octubre de 1881 y han deducido de ahí la mejor manera de construirlos. Entre muchos ejemplos se escojerá los dos más importantes y más instructivos, los del Nagara i del Kiso Gawa, construidos por otra parte muy diferentemente.

Los machones del puente del Nagara estaban todos compuestos de un grupo de cinco columnas circulares de fierro fundido de dos pies seis pulgadas de diámetro y de una pulgada de espesor, rellenas de hormigón, i cuya altura crecía con la profundidad, de las orillas al medio, hasta 20 pies, pero sin cambiar de sección. La carga era de 185 toneladas por machón. Las columnas de los machones de estribo quedaron intactas. Pero de las orillas al medio, donde el emplastillado había completamente cedido por hundimiento el número de las columnas destruidas aumentaba progresivamente hasta la totalidad en el grupo central. Estaban todas rotas en su base, pero las del centro, además, se habían fragmentado en muchos pedazos, muy probablemente a consecuencia de su caída. Este puente, así como el del Kiso-Gawa, por lo demás, habían resistido anteriormente a violentas inundaciones i a un terrible tifón que volcó una locomotora. La fragilidad del fierro fundido, aun relleno de cemento, fué, a pesar del sólido entrelazamiento de las cinco columnas de cada grupo, la causa eficaz de la destrucción del puente del Nagara i de sus similares, así este sistema debe ser absolutamente condenado. Es con razón que los japoneses lo han abandonado.

El puente del Kiso-Gawa, de 600 metros de largo, fué construido de un modo del todo diferente. Cada uno de sus machones de albañilería descansaba sobre el fondo del rio por dos pilares circulares de albañilería también de 12 pies de diámetro, i reunidos encima de la superficie media del agua por medio de una bóveda de arco lleno sobre la cual, así
como sobre los pilares, estaba construido el machon mismo. Cada machon, con un ligerlo beneficio sobre sus cuatro lados tenia 30 pies 9 pulgadas de altura, 21 i 10 pies de base. Estas dimensiones considerables, teniendo en vista la carga de 160 toneladas por machon, no les impidieron ser todas, el 28 de Octubre de 1891, rotas en la bóveda de juncion de sus pilares jemelos o muy cerca de ella. Es preciso detenerse aqui, puesto que los dos pilares de cada machon eran susceptibles de movimientos diferentes i antagonistas bajo la accion del esfuerzo seismico, porque se habia introducido aqui un elemento esencialmente inestable i destructible, la bóveda i, en fin, porque el vacio entre los pilares reducia la seccion util del machon justamente aqui donde el esfuerzo de la ruptura era mas grande, en la base. Se ha debido pues, despues del suceso, reemplazar los dobles pilares por un pilar unico eliptico de gran eje en el sentido de la corriente naturalmente, i cuya estabilidad seismica, mayor de un tercio, era, sin embargo, todavia insuficiente, como va a verse. En efecto, la aceleracion seismica ha sido medida en 4,000 mm. mas o menos en Kasamata, villa situada inmediatamente a la desembocadura del puente. El movimiento principal ataco el puente con una inclinacion, muy cerca de 67° sobre su normal, lo que en esta direccion daba 3,700 mm. de aceleracion para el esfuerzo de ruptura en el sentido delthalweg.

De las formulas dadas anteriormente, Omori ha llegado a una estabilidad seismica a de 850 mm. solamente para los machones de doble pilar, mientras que los machones elipticos de reemplazo tenia una de 1,270 mm. La ventaja ha sido pues de 420 mm. despues de la refaccion, o sea un tercio de mas. Se esta sin embargo, todavia bien lejos de los 3,700 necesarios.

Ha sido pues preciso buscar otra solucion. Omori la ha encontrado en el perfil doblemente parabolico de los machones superpuestos cortados por un plano vertical paralelo al tablero del puente, sin que sea necesario ni aun utiil, estando dado el proposito perseguido, entrar en desenvolvimientos teoricos, bastara decir que Omori ha formulado la ecuacion
fundamental de estabilidad de manera que la resistencia a la ruptura sea constante en toda la altura del machón. El ha llegado así al perfil parabólico

\[y^2 = \frac{10 \, g \, \bar{F}}{a \, w} \, x \]

donde 2X es el largo del lado del rectángulo de la sección horizontal normal a la dirección longitudinal del puente a la altura y. Se tiene así dos arcos de parábola de ejes verticales para limitar el machón de cada lado y naturalmente se troncha en la cumbre el sólido así obtenido. Es ésta la sección de troncadura que sirve a sostener el tablero. En la práctica i siendo débil la curvatura de los arcos de parábola, se puede sin aumento notable de los materiales necesarios reemplazarlos por sus cuerdas, lo que no contribuye a debilitar el machón. Si se toma pues para a un número suficientemente grande y conforme a lo que se ha dicho para las aceleraciones observadas en los temblores destructores, se estará cierto de tener machones seísmicamente indestructibles porque el esfuerzo de dislocación no es de temer como se ha visto más arriba.

Los machones parabólicos han sido definitivamente adoptados en el Japón y Pownal ha dotado con ellos muchos puentes de ferrocarriles de Usui. El ha tenido por otra parte cuidado de emplear mejores materiales y en particular un mejor mortero en la base que en la parte superior de los machones, economía mui sensible por otra parte.

Conclusion: Es evidente que el perfil parabólico debe aplicarse todas las veces que sea posible a las construcciones de grande altura con relación a su base. No es pues inútil señalar que las fórmulas de Omori conducen a la consecuencia de que los machones cuadrados, rectangulares y circulares tienen estabilidades seísmicas proporcionales a los números 10, 4, 3, 5 en igualdad de sección de base y de otros coeficientes, bien entendido.
5.—Faros i mesas aseismicas para lámparas de Faros

Las narraciones de los temblores que se han compulsado no hablan de caída o dislocación de faros, pero se sabe que estas construcciones son muy sensibles a los seísmos, y se puede decir que sus guardianes viven en verdaderos seísmóscopos. Es así como a lo largo de las costas de Noruega y de Chile estos humildes funcionarios son muy útiles en la colecta de las observaciones seísmicas.

Teóricamente su forma debería ser parabólica de revolución. No se les ha construido de esta manera, pero con frecuencia la curvatura que se les da para permitirles mejor resistencia al choque de las olas responde en parte a este desideratum.

Si no han habido todavía algunos destruidos por ruptura a lo largo de las costas inestables es probablemente porque son siempre construcciones estremadamente cuidadas y bien estudiadas, a causa de la necesidad de darles una resistencia suficiente contra las tempestades.

Pero si la construcción de los faros mismos no ha dado lugar a un sistema formalmente destinado a hacerlas escapar al peligro seísmico, por lo menos se ha pensado en proteger al aparato luminoso. El primero Stevenson (Trans. Soc. of Arts, Escocia, t. VII, 1868, p. 557.) pensó en colocar el conjunto de las lámparas y el dispositivo de rotación sobre una mesa hecha aseismica por bolas de fierro que le permitían rodar en todo sentido y sin choque peligroso bajo la acción del movimiento seísmico. Mas tarde, R. H. Brunton, encargado de la dirección de algunos faros japoneses, tuvo ocasión de constatar un ejemplo donde una de estas mesas no preservó de averías al aparato luminoso. En una memoria sobre los faros japoneses (Minutes of Proceedings of the Civil Engineers Institute, t. LXVII.) este ingeniero probó que después del establecimiento de estas mesas, el libre movimiento ocasiona tantos inconvenientes que los ingenieros europeos, entones al servicio del Japón, debieron fijarlas
por medio de garfios, y el sistema fué temporalmente aban-
donado. Se volvió a él en 1882 i, en el faro de Tetsuroga-
saki, un cierto número de tubos o globos de lámpara fueron
quebrados i derribados sobre los quemadores por el temblor
del 11 de Marzo de 1882 que, aunque se sintió en mas de
300 millas de costa, no produjo ningún daño en los otros
faros, en particular en dos situados a menos de 8 millas del
primero. En el mismo faro el temblor de 15 de Octubre de
1884 dislocó i quebró quince tubos de lámpara sobre treinta
i uno, confirmando así la ineficacia de las mesas seísmicas,
cuyo empleo Milne no condena sin embargo absolutamente.
Hace observar en efecto que por una parte el sistema está
destinado únicamente a atenuar el efecto de los movimien-
tos horizontales i no el de los verticales, i que, lo mismo que
para las fundaciones seísmicas, habría lugar a disminuir
notablemente la libertad del movimiento, Sea como fuere,
la cuestión ha quedado ahí.

6.—Portada de entrada de propiedades, columnas, monumentos
funerarios, ishidoros, menhirs

Se trata aquí de cierto número de construcciones ordina-
riamente poco elevadas, cuya forma de columna i su poca
altura esponen a la vez al derrumbe i a la ruptura. En cuan-
to al movimiento de rotación que ellos son susceptibles de
tomar bajo la ación de los seísmos, se reservará para el ar-
tículo siguiente:

Las relaciones de los terremotos son prolijas sobre estos
efectos que atestiguan la violencia de aquéllos de una ma-
nera espantosa. No se dará, pues, sino los detalles que pue-
dan ser instructivos i puedan conducir a imaginar paliati-
vos contra la destrucción de estos movimientos.

Inmediatamente después es necesario observar que objetos
semejantes de esta naturaleza, pueden ser dislocados en di-
recciones muy diferentes a despecho de una vecindad casi
inmediata. Por ejemplo, los dos pilares de entrada de la pro-
piedad Inglis en Cherrapoonjee el 12 de Junio de 1897, nueva
prueba, después de muchas otras, que construcciones o partes de construcciones muy aproximadas pueden ser sometidas en el mismo instante a movimientos muy diferentes. No hay ejemplo más instructivo de estas desigualdades de movimientos que el citado por von Prudnik de dos piedras de un mismo molino, en Remete, cerca de Agram en el temblor de 9 de Noviembre de 1880: la una en reposo, fué puesta en marcha, mientras que el movimiento de la otra fué detenido.

En el temblor de tierra de Agram del 9 de Noviembre de 1880, Walder cita el hecho de que la columna de la María Teresa quedó en pie en medio de la ruina completa de los edificios que rodeaban el Plaza del Capítulo, gracias a las bandas y a las ligaduras de fierro que unían todas sus partes. Esta simple advertencia da inmediatamente el medio preventivo que debe emplearse.

El solo ejemplo conocido (al menos por el autor) de menhirs derribados por los séismos es el de los de Kanchi en los Khasi Hill en el gran desastre de Assam, tan a menudo citado ya. Si el hecho en sí mismo no tiene gran interés bajo el simple punto de vista de construcción, no ha sido sin embargo menos útil de constatarlo porque él demuestra que este temblor no ha tenido equivalente en el país desde la erección de estos monumentos megalíticos, es decir, desde una antigüedad muy atrasada, puesto que el recuerdo de las poblaciones que los elevaron ha desaparecido completamente de las tradiciones populares locales de la época actual. Esta observación muestra también cuan imprudente es fiarse en la intensidad de los temblores devastadores conocidos sin temer que la violencia observada sea jamás sobrepasada en un día, y por tanto, que los constructores se restrinjan a tal o cual grado de precauciones preventivas contra sus efectos en lo venidero.

Los ishidoros son pequeños monumentos colunmarios, construidos en gran número alrededor de los templos japoneses, frecuentemente dispuestos en hileras, más o menos ornados de esculturas i de destino funerario, cuando no son empleados para soportar lámparas o linternas de uso religioso. De
formas muy variadas son dislocados e quebrados por centenas en todos los grandes temblores y dan con frecuencia lugar a observaciones interesantes sobre la naturaleza del movimiento seísmico, como así también los monumentos de formas similares de los cementerios cristianos. Según los casos, los unos y los otros pueden, por la uniformidad o la variedad del sentido de su caída, suministrar indicaciones precisas sobre la dirección del movimiento destructor, o bien demostrar la multiplicidad y la complejidad de las impulsiones seísmicas comunicadas a los unos y a los otros, a pesar de su vecindad mas o menos inmediata.

La fórmula de derrumbamiento que debe emplearse para deducir de ahí las dimensiones que los harían indestructibles por tal o cual amplitud seísmica peligrosa es la de West.

\[a = g \frac{X}{I} \]

donde \(X \) es la media dimensión de la columna supuesta de eje central trasversalmente al movimiento seísmico, y \(I \) la altura de su centro de gravedad; y en la hipótesis de que la amplitud no sea muy pequeña con relación a la base. Las vibraciones accesorias no son generalmente de temer a causa de la pequeñez de su amplitud.

7.-*Depósitos de agua en las estaciones de los ferrocarriles*

En los países espuestos a temblores es inadmisible hacer descansar los depósitos de agua encima de altas construcciones, aun para aquellos de débil capacidad destinados a la alimentación de las locomotoras en las estaciones de los ferrocarriles, de lo contrario su destrucción estará asegurada. Si pues con referencia a lo que precede no se resuelve darles una forma parabólica de revolución sería preciso por lo menos edificarlos sobre una armadura de madera en la cual se bajará tanto como sea posible el centro de gravedad.
Uno de estos depósitos fue destruido el 16 de Diciembre de 1902 en la estación de Fendtchenko, cerca de Andijane sobre la línea ferrea del Asia Central.

8.—Derribo de construcciones importantes

La ecuación de West no es aplicable a las pagodas, templos, palacios, habitaciones e otras construcciones cuyas dimensiones horizontales son muy grandes con relación a la amplitud del movimiento seísmico. Estos monumentos no son jamás derrubados en el sentido propio de la palabra, ni en el hecho, las descripciones de los temblores no señalan ningún ejemplo. Esta observación es útil tanto para mostrar el perfecto acuerdo de las observaciones con las experiencias e í las teorías de los seísmólogos japoneses, cuanto para llamar la atención sobre una expresión equivoca tan frecuentemente encontrada en las relaciones. Ellas caen por ruptura y no por derrubamiento a despecho de apariencias contrarias.

II.—Rotación i deslizamiento de objetos planos a causa de los temblores

9.—Tumbas i otros objetos expuestos a la rotación i al deslizamiento

La relación de los grandes temblores abundan en ejemplos de rotación, de deslizamiento i de traslación de objetos planos (plats) como las tumbas o de formas diferentes como los pilares, columnas, etc. Es éste un fenómeno al cual siempre se ha atribuido una gran importancia, quizás principalmente porque, según la opinión de antiguos seísmólogos, sobre todo italianos, él define el carácter de los temblores rotatorios vorticosi. En realidad este jénero de seísmos no existe, i el error de observación que ha hecho creer en su existencia parece mas bien esplicarse por lo que se ha dicho anteriormente sobre la estrema complejidad de dirección de las dife-
rentes componentes horizontales del movimiento enjundrado en la superficie terrestre por los seísmos violentos.

La exposición de la teoría mecánica de los movimientos de rotación y de deslizamiento bajo la acción de los temblores no entra absolutamente en el plan de esta obra. Por otra parte ellos son numerosos, lo que tendería a demostrar su poca solidez; el problema es por lo demás muy difícil de abordar de una manera completa; este desacuerdo de los seísmólogos lo prueba bien. Quizás todas lo mismo, salvo la primera, tienen una parte de verdad según los diferentes casos. Bastará pues enumerar sumariamente estas teorías y los principios sobre los cuales ellas descansan.

La primera en fecha, la de Sarconi, establecida a propósito del temblor de tierra de las Calabrias del 27 al 28 de Febrero de 1783 implica la rotación de una parte de la corteza terrestre, fenómeno muy difícil de concebir en sí y del cual la observación no confirma la existencia real. Mallet ha espuesto dos: en la primera él atribuye la rotación de los cuerpos al hecho de que el centro de resistencia y el centro de gravedad no se encuentran en el mismo plano vertical que la dirección del movimiento ondulatorio, y en la segunda él explica el fenómeno por un segundo movimiento seísmico de dirección oblicua con relación a la del primero y obrando, antes que éste haya cesado, con tendencia a producir un efecto de rotación del cuerpo alrededor de una de sus aristas o de sus ángulos de base. Gray se refiere a que el centro de gravedad y el ángulo alrededor del cual tiende a jirar no se encuentran en la dirección de la impulsión seísmica. R. D. Oldham ha discutido todas estas hipótesis esclareciéndolas y desarrollándolas, i Omori, por su parte, ha establecido dos fórmulas que no difieren en el fondo de la de sus predecesores pero que se darán solas aquí porque ellas han sido empleadas en las experiencias japonesas.

Sean:

1. X el lado de la base del cuerpo perpendicularmente a la dirección de propagación del movimiento seísmico,
2. y la altura del cuerpo (X es grande por relación a y),
g la aceleración de la pesantez,
m la masa del cuerpo,
a la aceleración horizontal del movimiento seísmico,
S el frotamiento,
p el coeficiente del frotamiento.
Se tiene:

$$S = ma = mg \frac{X}{y}$$

Desde que $\frac{X}{y}$ se hace mayor que p el cuerpo comenzará a deslizarse, no pudiendo tener lugar el derrumbe o la proyección sino por grandes valores de a.

Esta fórmula instruye muy suficientemente sobre la forma que debe darse a un cuerpo para que no sea dislocado, pero independientemente de esto es preciso no olvidar la ligadura de la base a los cimientos ni las de las partes constitutivas entre sí, porque de esto se obtendrá el complemento necesario de seguridad.

III.—Construcciones diversas accesorias

10.—Muros de sostenimiento, escarpes, terraplenes. — Muros aislados para estribos de puente, etc.

El perfil parabólico es evidentemente el único admisible para todos estos muros.

No se puede usar en ellos una práctica mas mala que la de constituirlos, como se hace a menudo, con piedras de gran espesor de cola triangular penetrando en el macizo por detrás y apiladas las unas sobre las otras con junturas de casco y mortero perdidos, con o sin cal. La destrucción, el 28 de Octubre de 1891, de semejantes escarpes en la ciudadela de Nagoya, ha dado lugar a esta conclusión falsa, indicada por Conder, que los muros de albanilería ofrecen menos re
sistencia que los de maderas i albañilería. Esto no era verdad sino porque se trataba allí de verdaderos muros de piedras secas, sin otra cohesión, insuficiente para el caso, que la debida al peso considerable de los bloques.

También en este mismo temblor del Japon Central se constató la destrucción de todos los muros de las rampas de acceso de las vías férreas a los puentes. Estaban todos verticalmente separados de los estribos. Será pues preciso cuidar particularmente los enlaces mútuos de estos muros con los de los estribos, i dar a su conexión formas convenientes, excluyendo los ángulos vivos. A menudo también por falta de cohesión de los materiales de la rampa misma se habían, por decirlo así, colado por las grietas. Esto ha sido señalado, por ejemplo, para el puente sobre el Nagara, donde la via ha quedado suspendida encima del vacío después de la fuga de la rampa. He ahí también un punto de vista que los constructores no deberán despreciar.

Tanto en el temblor de 31 de Agosto de 1886 en Charleston para el puente del ferrocarril de Savannah sobre el río Ashley como para muchos de los puentes sobre los innumerables ríos de Bengala i del Cachar en el temblor de Assam del 12 de Junio de 1897, se ha tenido ocasión de señalar un género de destrucción muy uniforme de estos puentes, a saber la aproximación mútua de los estribos opuestos, moviéndose el uno i el otro hacia el medio del curso del agua. Este efecto de converjencia es debido a la posición desgraciadamente inevitable de los estribos a la orilla de un terreno inclinado i a la libertad de movimiento oscilatorio seísmico que resulta al costado del agua. Se sigue la encorvadura del tablero del puente por contracción, efecto que hace saltar los pernos i las escalas de las líneas férreas i puede llegar hasta la destrucción completa del puente. R. D. Oldham cita un caso donde una portada de 20 pies había sido reducida a menos de 1.
11. — *Estanques, barreras i diques*

En el temblor del Japon Central del 28 de Octubre de 1891, Milne vió a 200 millas del epicentro producirse ondas en un estanque de paredes verticales y de 15 pies de profundidad. Subían de 2 pies y reventaban a 4 con violencia. Las paredes de tales estanques pueden pues ser derribadas, lo que sujete la opinión de que sería preciso un apoyo notable o una forma curva, semejante a la que se da a los rompeolas de los puertos de mar. Por el mismo temblor, un estanque del servicio de las aguas de la ciudad de Yokohama tuvo una porción de sus muros completamente derribada por el movimiento de vaiven del líquido.

Los diques de las barreras trasversales a los valles están sujetos a los mismos efectos. Será necesario, pues, calcularles en consecuencia la forma y las dimensiones.

12. — *Acueductos i canales*

Los grandes arcos del acueducto de Méjico fueron muy deteriorados por el temblor del 19 de Junio de 1858. Durante las sacudidas se les vió abrirse, después cerrarse alternativamente muchas veces, dejando escapar torrentes de agua. Mas de cien arcadas fueron maltratadas, de las cuales mas de la mitad amenazaban ruina después del suceso. Estos daños eran la consecuencia obligada del empleo de arcos.

Pownall atribuye la frecuente conservacion perfecta de ciertos acueductos romanos en países inestables al empleo de ladrillos enormes, lo que aumenta mucho la solidez de la bóveda, i a la excelencia del cemento romano.

Los antiguos acueductos subterráneos que los españoles habían construido en San Salvador (América Central) fueron en general reventados por el temblor del 19 de Marzo de 1873. Eran de sólidos adoquinados, en sección cuadrada, i formados de grandes enlozados de piedra sólidamente construidos, pero las junturas no pudieron resistir.
Los canales sufren mucho cuando están demasiado próximos a los ríos respectivos cuyas orillas, así como se ha visto, son puntos de elección para las series de hendiduras paralelas. Por otra parte, sus propias orillas están en las mismas malas condiciones. No hai otro medio paliativo que de darle a sus cortes una mui suave inclinación.

13. — Trabajos de minas i pozos

Según el testimonio de Troncoso, los temblores verticales son los más peligrosos, si no los únicos para los trabajos de minas.

Los únicos ejemplos que son conocidos de daños de importancia en minas (del autor al menos) son los de los temblores, todos chilenos, del 19 de Noviembre de 1822 en Valparaíso (mina de El Bronce, en Peteroa o Petorca), i de los de Copiapó del 5 de Octubre de 1859 (mina del Cármen Alto) i del 12 de Enero de 1864 (minas de Santa Elena i Tránsito a Ojancos) i en fin, de Coquimbo el 14 de Enero de 1854 en la mina de cobre de Cerro de la Cruz de Caña. Las galerías se rompieron en todos estos casos, sepultando a los mineros bajo sus escombros.

La falta de ejemplos relatados de destrucción de los pozos de descendimiento indica una inmunidad verosimilmente debida al hecho de que son bóvedas de eje vertical. Si están desnudos i cavados en roca viva, participan de la estabilidad.

La misma razón es evidentemente válida para los pozos ordinarios. Los ejemplos de haberse llenado por el fango i las arenas venidas de abajo i arrastradas por el agua bajo la influencia del movimiento seísmico, son muy comunes, a contrario de otros, mas que raros, de destrucción por daños en las paredes. En el temblor del Assam del 12 de Junio de 1897, se señaló un número considerable de ejemplos.

En el temblor del 31 de Agosto de 1886 todas las construcciones de la Fábrica de Gas en Charleston sufrieron gravemente apesar de su establecimiento sobre pilotes, necesa-
rio para un suelo bajo y fangoso. Todos los muros se agrife-taron a excepción del gran cilindro de ladrillos de eje vertical, que constituía el pozo del gasómetro. Esta cubierta había resistido perfectamente apesar de la amplitud considerable del movimiento oscilatorio que había experimentado, amplitud exactamente medida por el ancho de una hendidura de 24 centímetros existente entre ella y el suelo que la rodeaba, lo que se constató después del temblor. Este hecho es una demostración sorprendente de la resistencia que ofrecen las bóvedas de eje vertical, porque los materiales, ladrillos y cales eran más bien medíocres, habiendo sido levantada la construcción mucho después de 1838, época en la cual se había abandonado la cal de concha y los ladrillos a mano, como se ha tenido ya la ocasión de decirlo.

14.—Cañerías de gas y otras

Las observaciones son raras a este respecto.

El ingeniero de las fábricas de gas de Yokohama, H. Pele-grin, ha podido decir en 1877 que desde hacía tres años ningún temblor había producido averías en los 20 kilómetros de cañerías de gas de fundición de esta ciudad, ni en los 35 de la de Yedo, aunque muchos temblores serios se hubiesen sentido allí, por ejemplo el del 8 de Febrero de 1874.

El 15 de Febrero de 1898 en Monserrate las cañerías de agua de la ciudad se rompieron en muchos puntos.

15.—Ferrocarriles

Los temblores que han ocasionado daños importantes en las vías férreas, o al menos aquellos de los cuales se posee detalles circunstanciados, son los de Copiapó del 5 de Octubre de 1859, de Charleston de 31 de Agosto de 1886, del Japon Central de 28 de Octubre de 1891, de Quétah del 20 de Diciembre de 1892, del Assam del 12 de Junio de 1897 y de Andijane del 16 de Diciembre de 1902. De una manera general, las vías férreas sufren por compresión contra un obs
táculo, que, lo mas a menudo, es una parte de la via misma que no puede ceder a causa de su peso. Tambien, despues del temblor se les vió torcidas, de manera mas o menos complicada, habiendo saltado las junturas de los rieles, las celosas y los tire-fonds arrancados.

En una longitud de 6 millas los rieles del ferrocarril de Copiapó estaban desnivelados. Cerca de Charleston se ha visto los dos estremos de rieles que se han alejado 21 centímetros, medida probable de la amplitud del movimiento seísmico i que concuerda pasablemente con la (24 cm.) obtenida por el ancho de la hendidura entre el suelo i la envoltura del gasómetro, de la cual se acaba de hablar mas arriba. En ciertos puntos toda la linea con sus durmientes ha sido dislocada en un arco cuya cuerda es la antigua porcion rectilínea, lo que indica una contraccion definitiva de la corteza terrestre. Despues del temblor de Quetah el ingeniero Egerton debió acortar una parte de la linea en 2 pies 6 pulgadas; en efecto cuatro pares de rieles de 30 pies i un par de veinticuatro fueron cambiados por cinco pares de 24 pies i uno de 21 pies, 6 pulgadas, diferencia 2 pies 6 pulgadas, que representan la contraccion de la corteza terrestre. He aqui un fenómeno geológico extremadamente interesante, acompañado por otra parte de la formacion de un defecto.

Casi no se ve como se podria preservar las vías férreas de accidentes semejantes. En todo caso el descarrilamiento de un tren a 9 millas de Charleston sobre la linea de las Carolinas, demuestra que, despues de un temblor violento, es preciso que los trenes sean conducidos con la mayor prudencia en la region desvastada, o mas sabiamente aun que no se les deje circular sino despues de una cuidadosa inspeccion de la linea. En el caso de que se trata aqui, el descarrilamiento tuvo lugar en el momento mismo del temblor, de suerte que se ignora si fué la consecuencia directa del movimiento seísmico o de la desorganizacion de la via férrea.

Hasta estos ultimos tiempos no se habia notado todavfa la ruptura de rieles a continuacion de una curvatura demasiá-
do grande para su elasticidad bajo la influencia de la compresión. Según el testimo-nio del capitán Melporiani (Levitzki. Bioulletene postoiamnoi t sentralnoi seismiteskoj com-missii, 1902. Octubre a Diciembre, páj. 34) el caso se produjo el 16 de Diciembre de 1902 cerca de Andijane en el ferrocarril de Asia Central.

16.—Cables Sub-marinos

Los cables sub-marinos son susceptibles de ser cortados por los temblores mucho más a menudo de lo que podría imaginarse. Milne (Brit. ass. for the Adr. of sc.—Bristol Meeting: Third. Rep. of the Comm. on seism. Invest. p. 292) ha dado cierto número de ejemplos para toda la superficie del globo i Forster, W. G. (Earthquake origin. Trans. of the seism. soc. of Japan. XV, 1890, p. 73) para el Mediterráneo oriental. Bajo el punto de vista de su establecimiento no es posible casi oponerse a esta consecuencia de los temblores muy a menudo sub-marinos, y es preciso dejarles soltura en el momento de la colocación, medio quizás delicado de emplear a causa del peligro de ver formarse allí argollas perjudiciales a la buena trasmision eléctrica. Pero lo mejor sería evidentemente prenderse de las regiones sub-marinhas espuestas a los grandes temblores. Desgraciadamente se le conoce aun jeneramente muy mal, y precisamente son estas rupturas de cables las que han hecho conocer mejor estas regiones oceanías seismicamente inestables. En ciertos casos se puede sin embargo rodear el obstáculo; por ejemplo están bien indicado que los cables sub-marinos no deberían abordar el Japon mas que por su costa occidental.

No entra en el plan de esta obra hablar de las destrucciones de los cables sub-marinos por las erupciones volcanicas sub-marinhas.

Nota.—De datos nuevamente obtenidos cerca de las compañías de cables sub-marinos, resulta que sus rupturas por temblores serian mucho más raras como no lo dan a pensar las memorias de Milne i de Forster. Esto está bien de acuer-
do con la idea que puede formarse de cuerpos tan sólidamente colocados i cuya resistencia a la ruptura alcanza, por ejemplo, a 40 kilogramos por milímetro cuadrado para el cable de Dakar-Brest, con alargamientos de 3%. En efecto los ingenieros competentes estiman que ellos no se cortan sino por choques trasversales, que no tienen nada que ver con los temblores. Es así como en ciertos casos se ha podido invocar en el Atlántico casi con certidumbre el choque del cable bajo la acción de violentas corrientes submarinas por bloques errantes de aristas vivas, traídas a esos parajes por los icebergs de la época actual o del periodo glacial. En resumen hasta que se señalen hechos probados, será necesario admitir que las vibraciones sísmicas, aun las mas violentas, no tienen acción sobre los cables sub-marinos.

CAPITULO IX

SISTEMAS DE CONSTRUCCIONES DESTINADAS A COLOCAR LAS HABITACIONES AL ABRIGO DE LOS TEMBLORES

1.—*Sistema Lescasse*

Lescasse ha partido de la idea, expuesta en una Memoria publicada en 1887 de que el ideal de la perfección en un país sometido a temblores «estaría en una construcción de albanilería en que los materiales i el cemento que los une llegasen a ser bastante adherentes para que se padiera considerar el conjunto del inmueble como formando un monolito... Es preciso hacer, en fin, un edificio rígido mas pesado en la base que en la altura... Al servirnos de las palabras monolito i rígido, no entendemos, sin embargo renunciar a la elasticidad que toda albanilería conserva siempre, mas o menos, puesto que esta elasticidad es sin duda indispensable, sobre
todo en los casos de sacudidas repentina i que algunas ve-

ces se sienten en los temblores».

Partiendo de ahí Lescasse imajina que los muros de una
construccion pueden ser idealmente divididos en trozos ver-
ticales, a manera de pilares, por ejemplo por medio de las lí-
neas de aberturas, que cada uno de estos pilares debe formar
por su propia cuenta un cuerpo sólido, único e indestructi-
ble, i que, en fin todos estos pilares deben estar ligados con-
juntamente de una manera invariable. De este modo él llega
a un sistema de tirantes verticales i horizontales, de fierro o
de acero embutidos en la albañilería i perfectamente ligados
entre ellos en las tres direcciónes octogonales del edificio,
altura, largo i ancho. Los tirantes verticales aseguran la
constitucion de los pilares i los tirantes horizontales los unen
entre ellos. El prevé los efectos de la dilatación debidos a
las variaciones de la temperatura por un sistema de clavos
de madera insertados en las ensambladuras. Este ingeniero
ha construido muchas casas de este jénero en China i en el
Japon; pero faltan las informaciones en cuanto al resultado
que haya podido obtener contra los temblores. Su sistema
parece haber tenido un precursor en un privilejio tomado en
California en 1868, pero sobre el cual Milne no da mas deta-
lles que esta simple indicacion.

2.— Sistema de Lt. Coronel Cortés i Aguyó

El Lt. coronel Cortés i Aguyó ha presentado su sistema de
construcciones a raiz del temblor de tierra de Manila de 17
al 20 de Julio de 1880. El parte de la idea de que existen
analoyas suficientes entre las construcciones ordinarias en
un país sometido a temblores de tierra i las construcciones
navales, ya que en uno i otro caso hai dos masas que repo-
san sobre un medio movible de poca consistencia molecular
que les transmite todos los movimientos, a los cuales el mismo
está sometido. Si las naves pueden resistir a los movimien-
tos que la mar les comunica en todas direcciones, es porque
ellos son construidos de materiales liíeros teniendo una re-
sistencia i al mismo tiempo una elasticidad suficientes i por
que se toman para ligar el conjunto todas las precauciones
necesarias a fin de formar un todo compacto. Seguramente,
dice este ingeniero una masa de albañilería hidráulica no re-
sistiría tan bien al movimiento seísmico como una armadura
de madera o de fierro, porque estos últimos materiales dan
con una menor masa una fuerza igual a la de los primeros,
porque este jénero de construcciones no cede un punto al efecto
de un cambio de forma i está también menos sujeto a los
efectos de ruptura, ya que se puede ligar al conjunto las par-
tes mas alejadas, i, en fin, porque en razón de la menos masa
la cantidad de movimiento comunicado es menos tambien.
Estas consideraciones muy juiciosas lo han conducido al prin-
cipio de que es preciso obtener construcciones ligeras i com-
puestas de partes continuas al menos aquellas de las cuales
dependen principalmente la resistencia i la solidez del con-
junto i que en cuanto aquellas para las cuales no se ha po-
dido obtener la continuidad deben ellas ser ensambladas i li-
gadas de manera de constituir un todo indestructible i en
particular al abrigo de cambio de forma de los ángulos.

No se podría decir que este principio haya conducido a
este docto oficial de ingenieros a un sistema original i verda-
deramente nuevo de construcciones. Pero él ha estudiado suce-
sivamente todas las partes de una habitación i dado para
cada una de ellas, siguiendo el principio colocado mas alto,
prescripciones especiales destinadas a mejorar contra los
temblores de tierra la condicion de las habitaciones, tales
como las que se edifican ordinariamente en el archipiélago
de las Filipinas.

En lo que concierne a los cimientos i en razón del suelo
blando i cenagoso de Filipinas—él tenía sobre todo en vista
da Manila—no es preciso calcular sobre una consolidación
artificial del terreno ni emplear cimientos profundos. Así
preconiza él la construcción de una plataforma de armadura
casi en la superficie del suelo o a poca profundidad, dando
a esta base una extension tan larga como sea posible. Todas
las partes serán amarradas sólidamente en todas direcciones
en particular aquellas que habrán de soportar los muros lo serán con bandas y hebillas de fierro. La plataforma deberá formar una sola masa sólida, absolutamente independiente del suelo, aunque sin embargo sea necesario fijarla al suelo por algunos puntos de manera de evitar el agrietamiento sobre la delgada capa de mortero hidráulico sobre la cual ella está establecida. El Lt. Coronel Cortés espera así evitar, tanto como sea posible al menos, el efecto de las conmociones sísmicas y del agrietamiento del suelo sobre el resto del edificio, pero hace bien en sospechar que no se engaña en cuanto a las sacudidas.

El ha estudiado en detalle las mejoras susceptibles de llevar a las diversas partes de la habitación criolla en las Filipinas, cuyo tipo derivado de la habitación española de la metrópoli antigua, con los cambios que han introducido en él tanto las necesidades de un clima tropical cuanto la abundancia de madera de construcción. Estas mejoras pueden ser imaginadas por todo constructor de profesión bien penetrado de las condiciones particulares susceptibles de llenar en los países expuestos a temblores, de las observaciones relatadas y de los principios expuestos. No habría, pues, lugar de reproducirlas en detalle, porque, por otra parte, otros paliativos del mismo género podrían ser propuestos.

Pero se puede criticar seriamente a Lt. Coronel Cortés de haber querido a toda costa conservar las barandas avanzadas de los pisos, parte de la habitación de las Filipinas en juego un rol considerable en la vida criolla. Es ella un elemento de construcción que no se puede suprimir radicalmente si se quiere subordinarlo todo a la cuestión de seguridad contra los temblores. Los paliativos que se aperte a su riesgo aunque racionales y bien calculados que sean serán ciertamente muy insuficientes a salvarlos de la destrucción.

No va sin decir que en su conjunto el trabajo de Lt. Coronel Cortés, está el seguro, está llamado a prestar grandes servicios.
3.— Casa de Clark i C.ª en San Salvador (América Central)

En 1884, Zaldívar, Presidente de la República del Salvador, hizo construir por una casa de Estados Unidos una villa pomposamente llamada Palacio presidencial con la estipulación de estar al abrigo de los temblores. Es esta una gran construcción con armadura de madera, cuyas partes todas son muy cuidadosamente ensambladas y entrelazadas y bastante semejante a los cottages americanos o a los Bungalows de la India. Ganchos de fierro refuerzan todas las ligaduras. Todo induce a creer que esta habitación responde bien a las exijencias de un país tan inestable que ha tenido desde esta época la suerte de no ser alijido por uno de los temblores destructores, tan frecuentes en el país, pero que la esperanza de una verificación interesante no debe bastar para hacerla desear.

4.— Casas de la Comisión española para la reconstrucción de las villas de Andalucía

A continuación del desastre de 24 de Diciembre de 1884 el Gobierno español nombra una Comisión técnica que establece cinco tipos de habitaciones aldeanas para la reconstrucción, que se imponía de numerosas villas de Andalucía. Estos tipos no difieren en realidad más que por su importancia o por tanto en lo que concierne sobre todo a la distribución interior.

La característica principal está en que las murallas son mistas. Los ángulos son dispuestos con contrafuertes de ladrillos y los muros con albañilería i son embutidos o ajustados sólidamente. Bandas horizontales de ladrillos y otras verticales concurren a la solidez del conjunto, al menos en el pensamiento de los miembros de la Comisión, en todo caso a su ornamentación. La armadura de los pisos es formada de vigas cuyas extremidades forman cuerpo con la muralla. El
piso i el techo del granero-boardilla forman un mismo cuerpo con la armadura de la techumbre. Angulos de fierro son empleados en todas partes donde es posible para reforzar las ligaduras.

5.—*Sistema Inouyé*

Desde algunos años se construyen en el Japon un gran número de habitaciones según un tipo, donde el inventor, el arquitecto Inouyé, ha aplicado la mayor parte de los principios, prometiendo hacer los edificios menos sujetos a la destrucción por los temblores, i él ha tomado de este un privilegio. El rasgo fundamental está en que las vigas principales del techo—cuya inclinación es apenas mas pronunciada que en lo de ordinario—son prolongadas hasta una plataforma establecida sobre el suelo. Para disimular la rareza de esta forma paredes accesorías verticales con armadura de madera que dan la ilusion de corredores de casa de campo ordinaria. En lugar de espigaduras i otras ensambladuras a pleina madera, que son causas de inseguridad, encajes de fundicion i estribos de fierro de formas muy variadas las sustituyen ahí. La cobertura es de carton betunado i enarenado, i, por tanto, muy lijero.

Estas habitaciones tienen la agradable apariencia de villas i Milne es de opinion que ellas deben resistir victoriosamente a choques que destruirían las construcciones ordinarias. En todo caso, si la observacion no parece haberse pronunciado todavía, el sistema parece al menos muy racional.
CAPÍTULO X

ALGUNOS MEDIOS PREVENTIVOS I APLICACION PRÁCTICA DE LOS SEISÍMÓGRAFOS A LOS PERICÓRRILES

1.---Algunos medios preventivos. Alcobas i mesas de refugio. Cámaras para temblores. Lámparas de seguridad.

Ha sucedido muchas veces que personas, sorprendidas por las sacudidas, cuando los grandes temblores, han escapado a la muerte refugiándose bajo mesas resistentes, bajo techos, o en alcobas con enmaderamiento, que las han preservado de la caída de los materiales de los pisos superiores i del techo. Se puede citar el ejemplo del Curá i del sacristán de Granesina que el 9 de Noviembre de 1880 en el temblor de Agram, se han salvado refugiándose bajo algunos bancos. De ahí a concebir un medio práctico i fácil de salud no había mas que un paso, i éste fué franqueado. Es de la misma manera que se ha visto a menudo a jentes salvadas precisamente porque no habiendo tenido tiempo de salir afuera, habían alcanzado solo a llegar bajo las puertas en el momento mismo en que la caída de porciones de murallas o de las tejas del techo las hubieran muerto infaliblemente si hubiesen sobrepasado el abrigo protector del dintel de la abertura. Por esto muchas personas en los países espuestos a temblores tienen la preocupación de buscar allí este refugio, bastante poco seguro por otra parte.

En todos los países de la América tropical espuestos a temblores se construye con bastante frecuencia en la vecindad de las habitaciones, o en los corredores, pequeñas casuchas, barricadas, cuartos o ranchos de materiales lijeros destinados a abrigar en ellos a los propietarios cuando la recurrencia de las débiles sacudidas ordinarias, o su aumento de intensidad, hace presajiar mas o menos próximo un terremoto destructor. Este medio, por otra parte muy recomendable, falta a menudo en su objeto porque los remezones avi-
sadores faltan a veces i en muchos casos sobre todo, por lo que estas construcciones accesorias sirven mas bien para dar asilo a los habitantes despues que la catástrofe ha dejado sus casas inhabitables, si no les fuera grato levantarlas despues de la caída.

Es en este mismo orden de ideas que el Sultan Abdul-Hamid se habría hecho levantar en Constantinopla en 1903 por un constructor austriaco una casa de acero para refugiarse en caso de temblores. Pero no se conocen los detalles de su ejecucion.

Se ha visto algunos terribles incendios que siguen a los temblores en el Japón a consecuencia de la caída de telones o de papel aceitado en los fogones. Se ha tenido también que señalar que desde hace algunos años la construcción de casas mistas con carpintería i piedra labrada ha tomado allí un desarrollo considerable; pero al mismo tiempo el uso de lámparas de petróleo se ha jeneralizado mucho de suerte que el peligro del fuego ha quedado tan grande como antes a consecuencia de su facilidad para volcarse por temblores simplemente récios. Tambien se ha buscado un remedio contra este nuevo peligro por la invencion de lámparas que deben apagarse completamente al caer. Se puede leer la descripcion de dos de estas lámparas en una comunicacion de Sekiya: Earthquake Safety Lamps. (Trans. seism. Soc. of Japan. XII 1888, páj. 81). El modelo de Shaftesbury no ha tenido la aprobacion de este seismólogo al contrario del de Yoshiba-Jawarachó. En todo caso la cuestion es de seria importancia.

2.—Aplicacion práctica de los seismógrafos a la explotacion de los ferrocarriles

Los seismólogos japoneses no se han contentado, como se ha visto, con emplear los seismógrafos en la investigacion de las formas las mas estables i las mas resistentes de las construcciones i de sus elementos bajo la accion de los temblores; ellos han aplicado tambien, bajo la iniciativa i la di-
recepción de Omori, estos instrumentos a los movimientos comunicados a los puentes metálicos de los ferrocarriles a la pasada de los trenes, pesados o livianos, lentos o rápidos, de manera de ver por medio de seísmógrafos registradas, cómo trabajan sus diversas partes, para deducir de ahí ulteriormente las formas y las dimensiones mas favorables. Estas investigaciones han dado resultados muy interesantes para la construcción de los puentes de ferrocarriles en particular, independientemente de toda cuestión de resistencia a los temblores, pero no es este el lugar de estudiarlos aquí. Era preciso sin embargo señalar estos estudios, consecuencia racional de la investigación experimental de los efectos de los temblores sobre estos edificios.

Muy lógicamente Omori y sus colaboradores, en 1894, han dotado a doce puentes de ferrocarriles japoneses de seísmógrafos establecidos permanentemente para seguir paso a paso el progreso de su desgaste, fatiga o deformación. En estas condiciones ellos podrán determinar el momento preciso en que deberán ser reparados y en qué partes, o bien rehchos llegado el caso. Este ejemplo fue seguido por A. Belar, en 1900, en el puente de Moor, cerca de Laibach.

El 14 de Junio de 1891 cerca de Mönchestein, al Sureste de Bale, las dos locomotoras de un tren de pasajeros se desriellaron sobre el puente de la Birse. Esta obra de arte cedió; algunos carros se amontonaron los unos sobre los otros, y otros cayeron al río. Setenta y cuatro muertos y doscientos cincuenta a trescientos heridos fueron víctimas de este grave accidente. No fué resuelta bien claramente la cuestión de saber si el descarrilamiento resultó del mal estado del puente, o, si él cedió a causa de la acumulación de peso en un punto, como consecuencia del amontonamiento de los carros desriellados. Pero sea como fuere para este caso particular, la primera hipótesis puede evidentemente realizarse e entonces la catástrofe se hace evitable con una vigilancia por medio de seísmógrafos que advertirán a tiempo el desgaste del puente.

El mismo método sirvió en Mayo de 1902 a los ingenie-
ros Bitter i Komouz para estudiar el estado, en esa época de catorce vías férreas, a los alrededores de Laibach, por la comparación de los seismógrafos obtenidos en los pasos de diversos trenes con aquellos que habría dado una línea nueva.

Se ve cuánto interés tendrían los servicios de inspección del estado de las vías férreas y las compañías de ferrocarriles mismas, en generalizar el empleo de un método que aumentaría en una gran proporción la seguridad de millones de viajeros. Es así como en el porvenir muchas catástrofes podrán ser seguramente evitadas.

CAPÍTULO XI

REGLAMENTOS DE EDILIDAD

En muchas circunstancias los gobiernos de los países interesados han dictado, a continuación de los temblores de tierra desastrosos, prescripciones para la reconstrucción de ciudades desvastadas, i previendo sagazmente el porvenir han hecho para siempre obligatorias, tanto para los edificios públicos como para las habitaciones privadas. Es preciso por otra parte reconocer también que una vez olvidado el recuerdo del daño la indiferencia si no las ha hecho siempre caer luego en desuso, al menos las autoridades se alejan rápidamente de su rigor.

Muchas de estas reglas han sido recordadas en el curso de la obra i lo más frecuentemente para reconocer su buen fundamento. Sería pues inoicioso repetirlas aquí, i bastará dar algunos detalles de carácter más bien histórico.

El Dey de Aljer, Aly, después del temblor de 16 de Febrero de 1716 ordena algunas prescripciones particulares, muy juiciosas por otra parte. El hecho merece citarse pues
es el primero en fecha de los reglamentos de edilidad, bien incompleto, sin embargo.

El gran Ministro de Portugal, marqués de Pombal, dicta un reglamento bastante severo después del temblor de Lisboa de 1.° de Noviembre de 1755. Es entonces donde fue sistematizado el sistema de construcción de casas-barracas (lujeras) que se le hizo obligatorio e exclusivo.

Es preciso en seguida llegar hasta el 28 de Abril de 1860 para ver publicado un reglamento de edilidad por Andres Pila, Ministro de Negocios interiores del gobierno pontificio, a raíz del temblor de Norcia de 22 de Diciembre de 1859. Una comision municipal de cuatro miembros estaba encargada de asegurarse que los arquitectos e los constructores siguieran bien exactamente las reglas deducidas de la observación de los desastres sufridos. Zonas determinadas de la ciudad eran puestas en interdicto como demasiado peligrosas. Se recomendaba, sin imponerlo absolutamente, las habitaciones del sistema baraque. En fin, se aprovechaba de esta circunstancia para dar a la comision el poder de aprobar o desaprobar, bajo el punto simple de vista arístico, los proyectos de las fachadas de las casas cuyos planos le eran sometidos en conformidad con el Reglamento.

Después del desastre del 17 de Julio de 1880 en Manila, un telegrama de Madrid ordenaba al gobierno jeneral de las Filipinas de dictar un reglamento para la reedificación de las construcciones públicas e privadas. Este reglamento, promulgado el 17 de Agosto siguiente, había sido elaborado por el Comité Consultivo de la Inspección jeneral de trabajos públicos. El no se aplicaba a las habitaciones indígenas de madera o de nipa, i se estendía para las otras a todo el archipiélago. Los proyectos i los planos de los edificios públicos debían ser sometidos a la aprobación de la Inspección Jeneral, que para las habitaciones privadas no intervenía sino después de la construcción para permitir ocuparla, de otro modo el locatario era espulsado. Fuera de las ciudades un funcionario competente ejercía los poderes de la comisión. La tarea del Comité ha sido grandemente facilitada en
1880 porque a continuación del temblor de 3 de Junio de 1863 el gobierno general de las Filipinas había hecho llamar un cuerpo de oficiales de ingenieros que había elaborado una serie de respuestas a las cuestiones bien definidas relativas a la construcción i reparación de edificios públicos i privados. En definitiva el reglamento de 17 de Agosto de 1880 era la realización del trabajo de 1863.

El temblor de Ischia de 28 de Julio de 1883 induce al Ministro de trabajos públicos del gobierno italiano a nombrar una comisión técnica de los desastres. Resulta de aquí un Reglamento en todo analogo al de Manila i cuyas prescripciones difieren para los edificios públicos i particulares, un poco menos severos en el segundo caso. La cuestión de reparaciones ocupa ahí estenso lugar.

El Gobierno español se contentó, después del desastre de Andalucía de 24 de Diciembre de 1884, con hacer estudiar por una comisión técnica la reconstrucción de las ciudades destruidas. Resulta de aquí una serie de cinco tipos de habitaciones lugareñas, pero ningún reglamento de edilidad.

Así fue también el resultado de los trabajos de la comisión de estudios de los desastres nombrada por el Gobierno italiano a raíz del temblor de la Liguria de 23 de Febrero de 1887.
APÉNDICE

Durante la impresion de este trabajo el autor ha tenido conocimiento de tres memorias muy importantes publicadas a continuación del gran temblor de Chemakha de 31 de Enero de 1902. Contienen ellas un cierto número de datos muy interesantes sobre la manera de comportarse de las construcciones en los países expuestos a temblores de tierra i de resultados enteramente nuevos e inéditos, que sería imposible dejar aquí en silencio. Por lo demás, ellos no hacen mas que confirmar todo lo que ha sido expuesto precedentemen- te. Se estimará bien entendido hacer aquí una rápida descripción de aquello que presente un interes real. Estas me- morias son las siguientes.

El primero de estos trabajos es una relacion muy detallada resultante de la inspeccion por una comision oficial de la re- jion destrozada. Se encierran ahí muchas observaciones que
no contienen nada de nuevo; pero también algunas que conviene reproducir para no omitir aquí nada de lo que interese a las construcciones expuestas a temblores.

La segunda memoria es interesante, pues que ella clasifica por orden de seguridad creciente los diversos tipos de habitaciones del país i como el resultado de una estadística muy circunstanciada. Se ve ahí confirmado todo lo que ha sido dicho aquí anteriormente.

En fin, el tercero i último trabajo presenta proyectos de construcciones anti-seísmicas o seísmicas muy juiciosamente establecidas por una Comisión nombrada en el seno de la sociedad imperial rusa, técnica de Bakou, i que será muy útil conocer, seguir e imitar. Era evidentemente indispensable de describir estos proyectos al menos sumariamente.

Este apéndice presenta tanto mayor utilidad cuanto que la lengua rusa es poco esparcida, desgraciadamente para la difusión de los trabajos seísmológicos de alto valor publicados durante algunos años bajo el impulso del Comité seísmológico de la Academia de Ciencias de San Petersburgo.

Torres de las mezquitas

En el Cáucaso, la Persia i el Turquestan muchas torres de las mezquitas son constituidas por una cúpula de madera en forma de cebolla dada vuelta, puesta sobre una torre circular, frecuentemente de piezas por intermedio de una serie de postes verticales plantados sobre el perímetro de la torre. En razón de su gran número i de su importancia religiosa es interesante saber cómo se comportan bajo la acción de los temblores. La de la mezquita de Jauhari-kal de Chemakha ha sido sacada de su lugar por una suerte de movimiento de torsión que ha hecho oblicuar los postes disponiéndolos en un hiperboloide reglado. Su demolición se imponía. Es claro que se habría evitado su ruina entrelazando sólidamente los postes por medio de la cruz de San Andrés.
Sentido de la abertura de las puertas de calle

Es esta una cuestión mucho más importante para la seguridad de los habitantes que lo que se podría suponer sin reflexión. En la región de Chemakha las puertas de calle se abren del exterior al interior, y esta disposición, retardando notablemente la fuga de los habitantes, se encuentra muy ventajosa, pues ella les ha permitido evitar que fueran aplastados o heridos con la caída de los muros, caída que es producida casi exclusivamente hacia el exterior.

Techo

Tratándose de temblores se ha tenido la ocasión de observar algunas veces que el avance del techo se opone, por el frotamiento entre él y la parte superior del muro, a que la oscilación del muro perpendicularmente a su plano adquiera una amplitud desastrosa. Luego prolongando suficientemente el techo se hace en cierto modo obstáculo al dislocamiento.

Seguridad relativa de las diversas habitaciones del Cáucaso

I va sin decir que los pobres habitantes del Cáucaso se preparan ellos mismos una tumba cuando construyen sus miserables habitaciones reuniendo espesas capas de tierra varillas y vigas raramente derechas y jamás escuadradas, repasando el todo sobre dos muros de lodo y guijarros, últimos materiales que los kurdos no vacilan en reemplazar por cráneos de animales domésticos, caballos, bueyes, perros, corderos, como para darse por avance un símbolo de la muerte que les aguarda bajo los escombros de sus moradas.

La situación se mejora un poco cuando una cal parsimoniosamente empleada sirve para unir los murrillos irregulares y que el muro presenta un ornato exterior albanilado hecho de piedras convenientemente talladas e escuadradas.
La ligereza, la homojeneidad y la elasticidad, sino la real solidez, de los muros de ladrillos crudos, llevan un poco de seguridad relativa a los habitantes un poco más afortunados que los emplean.

Después viene el sistema local llamado Maoneriate y cuya disposición consiste en el empleo de parejas de vigas horizontales paralelas que formando a los muros dos sistemas sucesivos de cinturas lo consolidan muy notablemente.

Frecuentemente por medio de zigzags se entrelazan estos cuerpos de vigas y aumentan todavía la solidez del procedimiento. Sin embargo la Comisión técnica de Bakou ha creído un deber condenarlo en razón de la inengable elasticidad de la madera y de la piedra, sin considerar que en el fondo no hai ahí sino un bosquejo de construcciones en forma de barricadas fáciles en consecuencia de mejorar.

Las habitaciones construidas con buenos muros de morrilllos y ornamentado con piedras bien talladas han convenientemente resistido, menos, seguramente, que aquellas de ladrillos cocidos.

Vienen en seguida las casas cuyos muros corresponden al sistema llamado Tourloutchenie que han ofrecido la mayor resistencia a los temblores, cuyos efectos sobre ellos han sido casi nulos. Estos muros consisten en una serie de pilares de madera verticales en las dos fachadas exteriores a las cuales son ligadas por delgadas planchas horizontales o latas. El espacio intermediario es llenado de arcilla amasada. Con los más fuertes temblores estos muros se bambolean, las planchas se desorganizan mas o menos en sus sitios, pero no se produce ahí en suma mas que deterioros fácilmente reparables. Este sistema es una verdadera baraque del cual todas las observaciones pregonan la inmunidad cuando él es completo en todas sus partes.

En fin, vienen las habitaciones compuestas de un piso bajo de albanilería (cal, canto, arena, yeso, ladrillo, etc.) y montado por un piso alto abarracado. Ellas se han manifestado las más resistentes.

La intensidad del temblor de tierra de 31 de Enero de
1902 en Chemakha no ha pasado la intensidad IX de la escala Rossi-Forer i es la pobreza de las construcciones la que ha sido aquí un factor eficaz en la produccion de los perjuicios. Si él hubiera sido más violento, todo habría sido confundido en un desastre igual, y esta interesante clasificacion de modos diversos de construcción habría sido completamente imposible. No se podría desear una más brillante confirmación por la estadística de todo lo que habría enunciado en este trabajo.

Proyectos de construcciones anti-seísmicas de la comision de la Sociedad imperial rusa, técnica de Bakou

La comision nombrada por la Sociedad imperial rusa de Bakou tomando con provecho las numerosas observaciones hechas por Weber i Tere-Michelow sobre los diversos tipos de construcciones usados en el país, a propósito del temblor de 31 de Enero de 1902, ha establecido cinco tipos de habitaciones adaptadas a las condiciones especiales de las regiones seísmicamente inestables, tomando en cuenta las costumbres locales. No se hará mención más que de dos, el primero, destinado a la parte pobre de la población, el segundo, interesante mejora de la habitación burguesa rusa, aceptable, por otra parte, para todos los países. Los otros proyectos quedan comprendidos entre los tipos ya conocidos, por ejemplo las casas de fierro y albañilería, i además las preocupaciones relativas a los daños de incendio que juegan un gran rol, aun cuando bajo este punto de vista no hai nada que hacer dentro del cuadro de este trabajo.

Habitaciones pobres

La comision se ha fijado en un tipo de barraca, con armadura de madera, conformándose también a la experiencia de todos los tiempos i de todos los países.

La habitación, simple piso bajo sin altos, con o sin graneño o guardilla, descansa sobre buenos muros de cimiento. La
armadura de madera, muy cuidadosamente estudiada en todos sus detalles, se compone de montantes verticales insertados, arriba y abajo, en pares de viguetas, horizontales, a las cuales se ensamblan las vigas del piso, del cielo y del techo. Las junturas o inserciones son en todas partes reforzadas con estribos y grapones de hierro. El techo se prolonga, como en las casas hispano-americanas, para formar galería exterior, sostenido por pilares que formen parte del cuadro general de la armadura de madera. Es inútil entrar en los detalles de un sistema juiciosamente establecido; no aprendería nada un constructor de profesión.

Hai, sin embargo, un detalle útil que dar a conocer. El parapeto de los muros está formado de tejidos o encañizados fuertemente clavados a la armadura, tanto al exterior como al interior, i que se les tapa por un blanqueado. El intermedio es relleno con lijeros manojos de paja aplastados entre ellos y preparados de una manera particular. Ellos son remojados en cal i después de secos en arcilla líquida. Se les comprime en el muro con arcilla también. Se obtiene así un muro muy poco conductor del calor i hasta incombustible, en todo caso quemante sin llamas i con una mui grande lentitud. Su elasticidad i su ligereza le dan todas las cualidades requeridas para los países espuestos a temblores.

Habitaciones burguesas

En lo que concierne a las habitaciones burguesas la Comisión de Bakou ha sacado un partido muy ventajoso, original e interesante, de la inmunidad seísmica relativa que numerosas i antiguas observaciones hacen con buen derecho atribuir a los muros enterrados. Partiendo de aquí, ella ha tenido la idea de un piso bajo techado con cielo rasos (un rez de chaussée plafonné) enterrado solamente de manera de tomar suficiente claridad sobre el exterior para dar piezas verdaderamente habitables, i ella le sobrepone un piso con armadura de madera en todo análogo a la habitación precedente. El
proyecto muy completamente estudiado en todos sus detalles no exige aquí más amplia descripción. El parece resolver bien el problema de la casa de importancia media en los países expuestos a temblores, y se presta muy bien, por otra parte a las condiciones de las ciudades donde el espacio no falta para estenderse en plano i no en altura.
Tabla cronológica i de referencia de los temblores de tierra citados

Nota.—Las cifras romanas se refieren a los capítulos y las árabes a los párrafos.

EUROPA

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lugar</th>
<th>Capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1692 Setiembre</td>
<td>Aix-la-Chapelle</td>
<td>I 1.</td>
</tr>
<tr>
<td>2 1796 Febrero</td>
<td>"</td>
<td>I 1.</td>
</tr>
<tr>
<td>3 1777 Junio</td>
<td>"</td>
<td>I 1.</td>
</tr>
<tr>
<td>4 1855 Julio</td>
<td>Valais</td>
<td>I 6.</td>
</tr>
<tr>
<td>5 1858 Enero</td>
<td>Sitlein (Hungria)</td>
<td>I 1.</td>
</tr>
<tr>
<td>6 1870 Febrero</td>
<td>Klana Istria</td>
<td>I 1. I 2, I 9, IV 14, V 2, VII 6.</td>
</tr>
<tr>
<td>7 1872 Marzo</td>
<td>Alemania del medio</td>
<td>I 6.</td>
</tr>
<tr>
<td>8 1878 Agosto</td>
<td>Aix-la-Chapelle</td>
<td>I 1.</td>
</tr>
<tr>
<td>9 1880 Noviembre</td>
<td>Agram</td>
<td>III 1, III 3, III 4, III 10, IV 8, IV 10, IV 18, VI, VIII 3, VIII 6, X 1.</td>
</tr>
<tr>
<td>10 1895 Abril</td>
<td>Carniole</td>
<td>I 1.</td>
</tr>
<tr>
<td>11 1722 Diciembre</td>
<td>Lisboa</td>
<td>I 1.</td>
</tr>
<tr>
<td>12 1755 Noviembre</td>
<td>"</td>
<td>I 1. I 2, I 15, II. IX 4, XI.</td>
</tr>
<tr>
<td>13 1884 Diciembre</td>
<td>Andalucia</td>
<td>I 1. I 2, I 4, XI.</td>
</tr>
</tbody>
</table>

ITALIA

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lugar</th>
<th>Capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 442</td>
<td>Roma</td>
<td>II. IV 7.</td>
</tr>
<tr>
<td>15 801 Abril</td>
<td>"</td>
<td>II. IV 7.</td>
</tr>
<tr>
<td>16 1822 Diciembre</td>
<td>"</td>
<td>IV 7.</td>
</tr>
<tr>
<td>17 1783 Febrero</td>
<td>Calabria</td>
<td>I 1. I 2, 16, II. VIII 9.</td>
</tr>
<tr>
<td>18 1786 Octubre</td>
<td>"</td>
<td>I 1.</td>
</tr>
<tr>
<td>19 1831 Mayo</td>
<td>"</td>
<td>IV 7.</td>
</tr>
<tr>
<td>20 1835 Octubre</td>
<td>"</td>
<td>I 1.</td>
</tr>
<tr>
<td>21 1856 Abr 1</td>
<td>"</td>
<td>I 1.</td>
</tr>
<tr>
<td>22 1846 Agosto</td>
<td>Orciana (Toscana)</td>
<td>I 1. I. IV 17.</td>
</tr>
<tr>
<td>23 1851 Agosto</td>
<td>Basilicata</td>
<td>I 1. I. IV 1.</td>
</tr>
<tr>
<td>Fecha</td>
<td>Evento</td>
<td>Provincias meridionales</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>25 1899 Diciembre</td>
<td>22</td>
<td>Bellune</td>
</tr>
<tr>
<td>26 1873 Junio</td>
<td>29</td>
<td>Casamicciola (Ischia)</td>
</tr>
<tr>
<td>28 1887 Febrero</td>
<td>23</td>
<td>Calabria</td>
</tr>
<tr>
<td>29 1894 Noviembre</td>
<td>16</td>
<td>Città di Castello</td>
</tr>
<tr>
<td>30 1897 Diciembre</td>
<td>18</td>
<td>Monserrate</td>
</tr>
<tr>
<td>31 1898 Febrero</td>
<td>15</td>
<td>Rieti</td>
</tr>
</tbody>
</table>

EUROPA ORIENTAL

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Evento</th>
<th>Provincias meridionales</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 1742 Febrero</td>
<td>13-14</td>
<td>Zante</td>
<td>II.</td>
</tr>
<tr>
<td>34 1791 Octubre</td>
<td>22</td>
<td>"</td>
<td>II.</td>
</tr>
<tr>
<td>35 1820 Diciembre</td>
<td>29</td>
<td>"</td>
<td>II.</td>
</tr>
<tr>
<td>36 1840 Octubre</td>
<td>30</td>
<td>"</td>
<td>II.</td>
</tr>
<tr>
<td>37 1851 Octubre</td>
<td>12</td>
<td>Bérat (Albania)</td>
<td>I 6.</td>
</tr>
<tr>
<td>38 1856 Octubre</td>
<td>12</td>
<td>Santorin</td>
<td>VIII 10.</td>
</tr>
<tr>
<td>40 1867 Julio</td>
<td>24</td>
<td>Zante</td>
<td>II.</td>
</tr>
<tr>
<td>41 1893 Enero</td>
<td>31</td>
<td>"</td>
<td>I 1. II. V 3.</td>
</tr>
<tr>
<td>42 1893 Abril</td>
<td>17</td>
<td>"</td>
<td>I 1. II. V 3.</td>
</tr>
<tr>
<td>43 1894 Abril</td>
<td>20</td>
<td>Locride</td>
<td>I 1.</td>
</tr>
<tr>
<td>44 1898 Junio</td>
<td>2</td>
<td>Tripoli i Trípalonia (Peloponeso)</td>
<td>I 1.</td>
</tr>
<tr>
<td>45 1898 Julio</td>
<td>2</td>
<td>Sinj (Dalmacia)</td>
<td>IV 7. IV 18. VII 6.</td>
</tr>
<tr>
<td>46 1902 Julio</td>
<td>5</td>
<td>Salónica</td>
<td>I 5.</td>
</tr>
</tbody>
</table>
ASIA

ASIA MENOR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1880</td>
<td>Julio</td>
<td>29</td>
</tr>
<tr>
<td>49</td>
<td>1881</td>
<td>Abril</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>1883</td>
<td>Octubre</td>
<td>15</td>
</tr>
</tbody>
</table>

CÁUCASO I TURQUESTAN

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1859</td>
<td>Mayo</td>
<td>31</td>
</tr>
<tr>
<td>52</td>
<td>1872</td>
<td>Enero</td>
<td>16</td>
</tr>
<tr>
<td>54</td>
<td>1902</td>
<td>Enero</td>
<td>30</td>
</tr>
<tr>
<td>55</td>
<td>1902</td>
<td>Diciembre</td>
<td>16</td>
</tr>
</tbody>
</table>

JAPÓN

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1854</td>
<td>Diciembre</td>
<td>13</td>
</tr>
<tr>
<td>58</td>
<td>1874</td>
<td>Febrero</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>1879</td>
<td>Marzo</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>1880</td>
<td>Febrero</td>
<td>22</td>
</tr>
<tr>
<td>61</td>
<td>1882</td>
<td>Marzo</td>
<td>11</td>
</tr>
<tr>
<td>62</td>
<td>1884</td>
<td>Octubre</td>
<td>15</td>
</tr>
<tr>
<td>65</td>
<td>1890</td>
<td>Abril</td>
<td>16</td>
</tr>
<tr>
<td>66</td>
<td>1891</td>
<td>Octubre</td>
<td>28</td>
</tr>
</tbody>
</table>

302 | MEMORIAS CIENTÍFICAS I LITERARIAS
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67 1894 Junio</td>
<td>20</td>
<td>Tokio</td>
<td>I 16, III 6, IV 2, VIII 1, VIII 2.</td>
</tr>
<tr>
<td>68 1894 Agosto</td>
<td>22</td>
<td>Sakata</td>
<td>VII 17.</td>
</tr>
<tr>
<td>69 1894 Octubre</td>
<td>22</td>
<td>Shonai</td>
<td>VIII 1.</td>
</tr>
</tbody>
</table>

INDIA

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70 1869 Enero</td>
<td>10</td>
<td>Cachar</td>
<td>I 1, I 2, I 3, IV 17.</td>
</tr>
<tr>
<td>71 1885 Mayo</td>
<td>10</td>
<td>Cachemira</td>
<td>II.</td>
</tr>
<tr>
<td>72 1885 Julio</td>
<td>14</td>
<td>Bengala</td>
<td>VII 18.</td>
</tr>
<tr>
<td>73 1892 Diciembre</td>
<td>20</td>
<td>Quettach</td>
<td>VIII 15.</td>
</tr>
<tr>
<td>74 1897 Junio</td>
<td>12</td>
<td>Assam i Bengala</td>
<td>I 6, III 10, IV 5, IV 9, IV 16, IV 17, IV 18, V 4, V 6, VI 17, VII 18, VIII 1, VIII 2, VIII 6, VIII 10, VIII 13, VIII 15.</td>
</tr>
</tbody>
</table>

ÁFRICA

ALJERIA

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75 1716 Febrero</td>
<td>16</td>
<td>Arjel</td>
<td>IV 5, V 5, XI.</td>
</tr>
<tr>
<td>76 1790 Octubre</td>
<td>9</td>
<td>Oran</td>
<td>I 1.</td>
</tr>
<tr>
<td>77 1850 Febrero</td>
<td>9</td>
<td>Kabylie</td>
<td>II.</td>
</tr>
<tr>
<td>78 1855 Febrero</td>
<td>5</td>
<td>Kabylie</td>
<td>IV 17.</td>
</tr>
<tr>
<td>79 1867 Enero</td>
<td>2</td>
<td>La Mitidja</td>
<td>I 1, I 2, II.</td>
</tr>
<tr>
<td>80 1891 Enero</td>
<td>15</td>
<td>16</td>
<td>Gouraya</td>
</tr>
</tbody>
</table>

AMÉRICA DEL NORTE

ESTADOS UNIDOS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>81 1868 Octubre</td>
<td>21</td>
<td>San Francisco</td>
<td>I 1, II, IV 9.</td>
</tr>
<tr>
<td>82 1874 Febrero</td>
<td>10</td>
<td>Nueva Inglaterra</td>
<td>I 1.</td>
</tr>
</tbody>
</table>
Méjico

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Lugar</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>1858</td>
<td>Junio</td>
<td>Méjico</td>
<td>VIII 12</td>
</tr>
<tr>
<td>1870</td>
<td>Mayo</td>
<td>Oaxaca</td>
<td>I 6</td>
</tr>
<tr>
<td>1872</td>
<td>Marzo</td>
<td>"</td>
<td>I 6</td>
</tr>
<tr>
<td>1882</td>
<td>Junio</td>
<td>Estado de Jalisco</td>
<td>I 6</td>
</tr>
</tbody>
</table>

Centro América

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Lugar</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>1526</td>
<td></td>
<td>Guatemala</td>
<td>I 9</td>
</tr>
<tr>
<td>1538</td>
<td></td>
<td>San Salvador</td>
<td>I 9</td>
</tr>
<tr>
<td>1539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1541</td>
<td>Setiembre</td>
<td>Guatemala</td>
<td>I 9</td>
</tr>
<tr>
<td>1607</td>
<td></td>
<td>Guatemala</td>
<td></td>
</tr>
<tr>
<td>1773</td>
<td>Julio</td>
<td>Guatemala</td>
<td>VIII 3</td>
</tr>
<tr>
<td>1854</td>
<td>Abril</td>
<td>San Salvador</td>
<td></td>
</tr>
<tr>
<td>1857</td>
<td>Noviembre</td>
<td>San Salvador</td>
<td></td>
</tr>
<tr>
<td>1873</td>
<td>Marzo</td>
<td>San Salvador</td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>Enero</td>
<td>Quetzaltenango (Guatemala)</td>
<td>I 2, V 2</td>
</tr>
</tbody>
</table>

Antillas

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Lugar</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>1692</td>
<td>Junio</td>
<td>Puerto Príncipe</td>
<td>I 1</td>
</tr>
<tr>
<td>1839</td>
<td>Enero</td>
<td>La Martinica</td>
<td>I 1, VII 20</td>
</tr>
<tr>
<td>1843</td>
<td>Febrero</td>
<td>La Guadalupe</td>
<td>I 1</td>
</tr>
<tr>
<td>1852</td>
<td>Agosto</td>
<td>Santiago de Cuba</td>
<td>I 6</td>
</tr>
</tbody>
</table>
AMÉRICA DEL SUR

VENEZUELA

| 101 1841 Junio | 11 | Caracas | I 5. |
| 102 1812 Febrero | 26 | Caracas | I 5. |

PERÚ

| 103 1578 Junio | 17 | Lima | V 2. |

CHILE

104 1562 Octubre	28	Penco	I 9.
105 1822 Noviembre	19	Valparaíso	I 1. VIII 13.
106 1835 Febrero	20	Talcahuano	I 1. II. III 10.
107 1854 Enero	14	Coquimbo	VIII 13.
109 1864 Enero	12	Copiapó	VIII 13.

REPÚBLICA ARGENTINA

| 110 1861 Marzo | 20 | Mendoza | II. |

OCEANIA

FILIPINAS

111 1863 Junio	3	Manila	II. VII 23. XI.
112 1880 Julio	17-20 Manila	II. VII 23. XI.	
113 1897 Setiembre	21	Zamboanga (Mindanao)	VII 23.
NUEVA ZELANDA

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>Lugar</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>Octubre</td>
<td>16-20 Wellington</td>
<td>II.</td>
</tr>
<tr>
<td>1855</td>
<td>Octubre</td>
<td>16-18 Wellington</td>
<td>I 5.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>temblores.</td>
<td>-</td>
</tr>
</tbody>
</table>
INDICE BIBLIOGRÁFICO

Este índice bibliográfico está destinado a rendir justicia a numerosos seísmólogos cuyas obras y trabajos han sido utilizados, sin que se haya hecho siempre espresamente referencia a sus memorias. El será útil además para permitir el control de las observaciones relatadas i en caso de necesidad extraer mas detalles.

2. Baratta, M.—Nuove considerazioni sul terremoto di Rie ti del 28 giugno 1898 (Voghera, 1900).

4. Bertelli.—Relazione di alcune conference geodinamiche tenute in Firenze nel maggio 1887 risguardanti anche le norme edilizie per attenuare i pericoli dei danni nei terremoti.

6. Boughdanoritch, C.—Nieskolko zamiet chenů o zemletrienia-
cennu ve Chémakié 30 Ianuapía 1902 goda. (Izvjestiia
postoianoi tsentralnoi seismitcheskoi komissii. T. L.
7. Bussε.—Das Erdbeben in der Gegend von Freiburg am
17 November 1890.
8. Boué.—Über das Erdbeben, wuelches Mittel-Albanien
im Oktober d. J. (1851) so schrecklich getroffen hat.
(Sitzungsberichte d. k. Ak. d. Wissenschaften 1851. VII.
9. Carnaval.—Das Erdbeben von Gumund am 5. November
1881. (Sitzungsberichte d. k. Ak. d. Wiss LXXXVI. Bd.
10. Carpentin.—Notice sur les tremblements de terre de
11. Centeno y Garcel.—Abstract of a memoir on the earth-
quake in the Island of Luzon in 1880 (Trans. seism.
Soc. of Japan. V Tokyo 1883).
12. Chesneau.—Note sur les tremblements de terre en Algé-
rie (Ann. des Mines. 9ème Série. Mémoires T. I. 1892
p. 5).
13. Conder.—And architect’s notes on the great earthquake
of october 1891. Mino Owari. (Seismological journal.
Tokyo. II p. 1).
14. Coronas.—La actividad seismica en el archipiélago filipino
durante el año 1897 (Manila 1899).
15. Cortés y Agullo, Lt. Cor.—Los terremotos, sus efectos en
las edificaciones y medios prácticos para evitarlos en
lo posible. (Manila 1881).
16. Davison, Ch.—The Quettah earthquake of december 20th
17. Dutton, C.3—Thi Charleston earthquake. 31st. August
Washington 1889).
18. Faidiga.—Das Erdbeben von Sinj am 2 Juli 1898 (Mitt.
Folge N°. XVII 1903.
19. **Forster, W. G.** —The recent great earthquake at Zante (31st Jan and 17 April 1893).

27. —A Catalogue of earthquakes on the Pacific Coast, 1769 to 1897. (City of Washington 1898 Smithsonian miscellaneous collection No. 1087).

28. **Ibarra.** —Temblores y terremotos en Caracas (Caracas 1862).

34. *Lévy,* P. Nicaragua.—Paris 1873.

35. *Mallet, R.*—The first principles of observational seismology as developed in the Report to the Royal Society of London of thy mode by command of the Society into the interior of the Kingdom of Naples, to investigate the circumstances of the great earthquake of december 1857. London 1862.

39. —Construction in earthquake countries. (Trans. seism Soc. of Japan XIV Tokyo 1887).

40. —The movement produced in certain buildings by earthquakes. (Idem XII).

41. —Earthquake motion within a small area. (Idem XIII Parte I).

42. —Notes on the recent earthquakes of Yedo Plain and their effects on certain buildings. (Idem II 1880).

43. —On a seismic survey made in Tokyo in 1884 and 1885. (Idem X).

45. Moukhtetow y Orlov.—Catalogue zemletriaceni rosiskot Imperu. (Saint Petersburg 1893).

46. Moukhtetow.—Materialen po Akalkaksko mon zemlatriacenen. 19-20 de kabria 1899 g. (Troudem geologiches kaw komileta 1903).

47. Oldham, Th.—Thi cachar earthquake of 16th Jan 1869. (Mem. of thi geol. Survey of India XIX Part. I. Calcuta 1882).

52. Orozco y Berra.—Ezemérides seismicas mejicanas. (Méjico 1882-1888).

56. Perrey, Al.—Documents relatifs aux tremblements de terre du Chili. (Lyon 1854).
58. Pournall.—On recent publications relating to the effects of earthquake on structures. (Trans seism. soc. of Japon XV. 1).
59. —Appendix to the abobe notes. (Idem).
60. De Rossi Stef.—Il terremoto di Roma del 23 febbraio 1890, Massime in ordine all’edilizia. Boll. del vulcanismo italiano XVII. 5).
63. Sekiga.—The severe Japan earthquake of the 15th jan 1887. (Trans. seism. soc. of Japan XI. 79).
71. Memoria del comisario rejio, nombrado por real de-
creó de 13 de abril de 1885 para la reedificación de los pueblos destruidos por los terremotos en las provincias de Granada y Málaga. (Madrid 1888).

72. Relazione della commissione par le prescrizioni edilizie dell’Isola d’Ischia istituita dal Ministro dei lavori pubblici dopo il terremoto die luglio 1883. (Roma 1883).

INDICE ANALITICO

Alcobas de refugio X 1.
Arjel (Reglas de——) IV 5. V 6. XI.
Andalucía (Casas de la Comision de—) IX 4.
Aparejo de muros de ladrillo III 5.
Aparejo de muros de albanilería III 2.
Acueductos VII 12.
Armenias (Casas—del Cauco) VIII 14.
Aseismicos (Cimientos —) IV 3.
Aspa VII 10.
Asfalto (Piso de —) IV 5.
Azoteas VII 1.
Armadura de madera, fierro VI. VII 16.
Armadura de los techos IV 18.
IV 14.
Alturas (influencia de las——) I 6.
Aislamiento de los edificios V 6.
Albanilerías III 1. III 2. III 3. XI.
Balcones IV 8.
Balaustradas IV 9.
Barracas VI.
Birmanas (Casas) VII 19.
Bordes de las llanuras I 2.
Basamientos IV 2.

Cables sub marinos VIII 16.
Calcuta (Casas de—) VII 18.
Cúpulas VIII 3.
Canales VIII 12.
Canales (orillas de los—) I 2.
Cariátidas IV 16.
Carton-pasta (ornamentos en—) IV 6.
Cefalonia (Casas de—) VII 7.
Cálidos III 1.
Chimeneas de habitaciones IV 7.
Chimeneas de fábricas VIII 2.
Cemento III 9. IV 5.
Cemento armado III 9.
Cimas (Construcciones sobre las—) I 6.
Clark i C.ª (Casa de—) IX 13.
Cliff-Dwellers (Casas de los—de Nuevo Méjico) VII 22.
Campanarios VIII 3.
Colinas (flancos de las—) I 6.
Colinas (pie de las—) I 7.
Columnas VIII 1. VIII 6.
Cañerías (de agua i de gas) VIII 14.
Contrafuertes IV 13.
Cornisas IV 9.
Corredores de las casas hispano-americanas VII 21.
Cortés i Agulló (Sistema de construcción del Lt. Coronel) II.
IX 2.
Coberturas IV 17.
Cumbre (construcciones sobre las—) I 6.
Cruces de iglesia VIII 3.
Cúpula IV 17.
Cimientos IV 1, IV 2, IV 3, IX 1.
Cielos. IV 6.
Corredores VII 18, VII 21, VII 23, IX 2.
Cámaras para temblores X 1.
Cuadrados de cerámica para fachadas VI, VII 3.
Casas de campo americanas VI.

Dálmatas (casas —) VII 6.
Djack (chimeneas, sistema)
Diques VIII 11.
Dimensiones de los muros V 5.
Direcciones de los muros III 10.
Discordancia (terrenos en) I 5.
Divisiones de las habitaciones V 3.
Dójico (órden) VII 12.
Derrumbes de columnas VIII 1.
Derrumbe de construcciones importantes VIII 8.
Derrumbe de los muros III 10.
Depósitos de agua en estaciones de ferrocarriles VII 7.
Deslizamiento de objetos planos VIII. II.

Edilidad (Reglamentos de —) X.
Escarapas IV 11.
Escarpe (muros de —) III 10.
Escarpaduras (influencias de las —) I 2 I 6.
Españolas (casas) VII 2.
Estanques (orilla de los —) I 3.
Escavaciones (influencia de las — bajo las ciudades) I 4.
Enladillado IV 5.
Estanques. VIII II.
Estabilidad (ecuación de —) VIII 1.
Estribos de puentec. VIII 10.

Fachada Perry.—IV 4.
Fierro (empleo del —) VI.
Fosos (vecindad de los—) I 3.
Funerarios (monumentos—) VIII 6—VIII 9.
Faros. VIII 5.
Filipinas (casas de las—) VII 23.

Gas (cárnicas de—) VIII 14.
Gasómetros VIII 13.
Góticos (monumentos—) IV 4.

Hispano-americano (casas) VII 21.
Hendiduras paralelas del terreno. I 3.
Hormigón. IV 5.

Incendios a causa de los temblores VII 15.
Inouyé (casas sistema—) IX 5.
Isla rusa VII 13.
Ischia (casas de—) VII 5.
Isidoros VIII 6.
V 2. VI. XI.
Italianas (casas) VII 4.

Karticos (países) I 4.

Lámparas de seguridad X 1.
Lescase (casas sistema—) XI 1.
Ligadura de los edificios V 4.
Liguria (casas de—) VII 1.
Lisboa (Reglas de—) VI. VII 3. XI.
Lodo (empleo del—como mortero) II.
Ladrillos huecos. III 5. VI.

Maddo (muros de—) II.
Manila (Reglas de—) III 1. III 7. IV 1. IV 13. IV 14. V 5. VI 23. XI.
Martinica (Casas de la—) VII 20.
Materiales. II. III 1.
Menhirs—VIII 6.
Menton (Casas de—) VII 1.
Metelin (casas de—) VII 9.
Molino (Albañilería con piedra de—) III 2.
Minas (trabajos de) VIII 13.
Mortero. II. III 1.
Molduras de yesos. IV 6.
Muros II. III.
Muros (dimensiones de los—) III 7.
Machones de Puentes—VIII. 3.
Muros de division—III 10. IV 10.
Madera (empleo de la—) VI.
Mesas para temblores. VIII 1.
Mesas aseismicas para lámparas de faros VIII 5.

Norceia (Reglas de—) IV 14. IV 17. V 2. XI.
Ojivas. IV 17.

Pagodas japonesas VII 17. VIII 1.
Parabólico (perfil—de los muros) III 8. VIII 2. VIII 4. VIII 10.
Pararayos—VIII 3.
Pendientes (Influencias de las—) I 5.
Pilares IV 3. VI.
Pilares (de cimiento) IV 1.
Pilotes IV 2.
Plan de un edificio V 1.
Puente (Regiones que hacen—) I 6.
Puente (Machones de—) VIII 4. VIII 10.
«Pontini». IV 17.
Puentes (de ferrocarriles) X 2.
Pórticos V 4.
Portadas VIII 6.
Puertas IV 4.
Pórticos IV 16.
Portuguesas (Casas) VII 3.
«Pouzzolane» (cemento a la—) II.
Preventivos (Medios) XI.
Pozos. VIII 13.
Piedra tallada (muros de—) III 2 IV 12.

Quebradas (orillas de las) I 3. I 5.

Reconocimiento seísmico del terreno. I 8.
Reglamentos de edilidad X.
Ríos (orillas de los—) I 3. I 5.
Romano (cemento) II. IV 1.
Rosetones en yeso. IV 6.
Rosa seísmica de un lugar III 10.
Rotación de objetos planos VIII, II.
Rotatorios (temblores) VIII 9.
Ruptura de las columnas. VIII 1.
Rampla de puentes—VIII 10.

Salas (grandes—) V 3.
Santorín (casas monolíticas de—) VII 10.
Sombra (Rejones que llevan—seísmica) I 6.
Seismógrafos (aplicación de los—en la esplotación de ferro-
carriles) X 2.
Sitio (conclusiones jenerales respecto a la eleccion del—) I 7.
Sostenimiento (muros de—) II. VIII 10.
Suelos-techos. IV 5.
Sotanos o bodegas. IV, 17.

Tallada (muros de piedra—) III 2. IV 2.
Templos japoneses. VII 17.
Terrenos (juncion de—diferentes) I 2.
Terrazas. IV 14. VII 5.
Tecnhos i techumbres. II. IV 7, IV 18.
Tumbas. VIII 9
Torres. VIII 3.
Torre Eiffel VII 17.
Traslacion de ciudades. I 9.
Tejas. IV 18.
Terraplenes. VIII 10.

Valles (desembocadura de los--) I 6.
Vertical seismica de un lugar. III 10.
Vibraciones seismicas marjinales--1 6.
«Victoria» (piedra artificial llamada--) VI.
Vitrificados (Monumentos antiguos--) VII 11.
Ventana. IV 4.

West (ecuacion de--) VIII 1.

Zante (casas de--) VII 8.
Zinc acanalado (coberturas de--) IV 18.