Urban Configuration for Pollution at Ground Level

Authors

Abstract

Between 2013 and 2018, building permits were granted to 80 towers of more than 20 floors in the district of Estación Central, in Santiago de Chile. This complex occupies 23.6 hectares and causes, to the south of them, a permanent shadow cone of 8,615,195.70 m3 at solar noon on June 22. As the concentration of polluting gases increases with cold, humidity and poor air circulation, the objective of this work was to know if urban conditions meet in this shadow cone to cause an increase in said concentration at ground level. For this, the shadow cone of the buildings, their continuity and distance relationships, the ventilation conditions, the presence of vegetation and the automotive fleet were studied in detail. A quantitative method was applied that combined observation and verification in the field; graphic and statistical analysis of existing documents and the elaboration of a three-dimensional model of the fragment under study. The research demonstrated the strong increase in shade, the decrease in tree vegetation and the increase in the automobile fleet in the commune. In addition, the existence of conditions that could be causing a decrease in air circulation in the shadow cone and an unfavorable orientation of the prevailing winds was verified.

Keywords:

Car park, shadow cone, tall building, thermal inversion, urban canyon, urban fragment, urban pollutants, vegetation

References

Aw, J. & Kleeman, M.-J. (2003). Evaluating the first‐order effect of intraannual temperature variability on urban air pollution. Journal of Geophysical Research: Atmospheres, 108(D12): 1-12. https://doi.org/10.1029/2002JD002688
Buzzelli, M. (2008), A political ecology of scale in urban air pollution monitoring. Transactions of the Institute of British Geographers, 33: 502-517. https://doi.org/10.1111/j.1475-5661.2008.00316.x
Cárdenas, L. A., & Uribe Araya, P. (2012). Acceso solar a las edificaciones. El eslabón pendiente en la legislación urbanística chilena sobre la actividad proyectual. Revista de Urbanismo, 14(26). https://doi:10.5354/0717-5051.2012.20922
Darçın, M. (2014). Association between air quality and quality of life. Environmental Science and Pollution Research, 21: 1954–1959. https://doi.org/10.1007/s11356-013-2101-3
Escobedo, F. J., Kroeger, T. & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution. 159:2078-2087. https://doi.org/10.1016/j.envpol.2011.01.010
Giyasov, B. & Giyasova, I. (2018). The Impact of High-Rise Buildings on the Living Environment. E3S Web of Conferences, 33:1-7. https://doi.org/10.1051/e3sconf/20183301045
Gramsch, E., Gidhagen, L., Wahlin, P., Oyola, P., & Moreno, F. (2009). Predominance of soot-mode ultrafine particles in Santiago de Chile: Possible sources. Atmospheric Environment, 43(14), 2260–2267. https://doi.org/10.1016/j.atmosenv.2009.01.047
Gramsch, E., Cáceres, D., Oyola, P., Reyes, F., Vásquez, Y., Rubio, M. A., & Sánchez, G. (2014). Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmospheric Environment, 98, 290–298. https://doi.org/10.1016/j.atmosenv.2014.08.066
Haghighat, F. & Mirzaei, P.A. (2011). Impact of non-uniform urban surface temperature on pollution dispersion in urban areas. Building Simulation 4, 227. https://doi.org/10.1007/s12273-011-0035-6
Hayati, H. & Sayadi, M.H. (2012). Impact of tall buildings in environmental pollution. Environmental Skeptics and Critics, 1(1):8-11. Recuperado de https://www.ingentaconnect.com/content/doaj/22244263/2012/00000001/00000001/art00002;jsessionid=2b2cddd6tlbch.x-ic-live-01
Inzulza Contardo, J., Wolff Cecchi, C. & Vargas Lara, K. (2017). Acceso solar: un derecho urbano para la calidad de vida vulnerado desde la gentrificación contemporánea. El caso de la comuna de Estación Central, Chile. Revista 180, 39: 1-15. Recuperado de http://www.revista180.udp.cl/index.php/revista180/article/view/283 http://dx.doi.org/10.32995/rev180.Num-39.(2017).art-283
Lipp, D. (2014). El cañón urbano su incidencia en la contaminación del aire. Actas Congreso Internacional de Geografía, p. 123-128. Recuperado de: http://www.gaea.org.ar/Actas2014_Lipp.pdf
Luis, J. (febrero 5, 2016). Los árboles más eficientes para la absorción de CO2. Conciencia Eco. Recuperado de: https://www.concienciaeco.com/2016/02/05/los-arboles-mas-eficientes-la-absorcion-co2/
Makhelouf, A. (2012). Impact assessment of the construction of tall buildings in a big town on the urban climate and the air pollution. E3 Journal of Environmental Research and Management, 3(4): 064-074. Recuperado de http://e3journals.org/cms/articles/1336909780_Ali.pdf
Michelot, N. & Carrega, P. (2014). Topoclimatogie et pollution de l’air dans les Alpes-Maritimes: mécanismes et conséquences en images. EchoGéo, 29. https://doi.org/10.4000/echogeo.13951
Mota, C., Alcaraz-López, C., Iglesias, M., Martínez-Ballesta, M.C. & Carvajal, M. (s.f.). Investigación sobre la absorción de co2 por los cultivos más representativos de la Región de Murcia. Murcia, España: Departamento de Nutrición Vegetal, CEBAS-Consejo Superior de Investigaciones Científicas. Recuperado de http://www.lessco2.es/pdfs/noticias/ponencia_cisc_espanol.pdf
Nicholson, S. E. (1975). A pollution model for street-level air. Atmospheric Environment, 9: 19–31. https://doi.org/10.1016/0004-6981(75)90051-7
Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1-3), 103–113. https://doi.org/10.1016/0378-7788(88)90026-6
OPS (Organización Panamericana de la Salud) (2018). Contaminación del aire ambiental exterior y en la vivienda: Preguntas frecuentes. OPS. Recuperado de https://www.paho.org/hq/index.php?option=com_content&view=article&id=14454:ambient-and-household-air-pollution-and-health-frequently-asked-questions&Itemid=72243&lang=es
Rojas Symmes, L. (2017). Ciudad vertical: la nueva forma de la precariedad habitacional. Comuna de Estación Central, Santiago de Chile. Revista 180, 39:1-17. Recuperado de http://www.revista180.udp.cl/index.php/revista180/article/view/365 http://dx.doi.org/10.32995/rev180.Num-39.(2017).art-365
Romero, H., Irarrázaval, F., Opazo, D., Salgado, M., & Smith, P. (2010). Climas urbanos y contaminación atmosférica en Santiago de Chile. EURE, 36(109), 35–62. https://doi.org/10.4067/s0250-71612010000300002
Sarricolea Espinoza, P., & Martín-Vide, J. (2014). El estudio de la Isla de Calor Urbana de Superficie del Área Metropolitana de Santiago de Chile con imágenes Terra-MODIS y Análisis de Componentes Principales. Revista de Geografía Norte Grande, (57), 123–141. https://doi.org/10.4067/s0718-34022014000100009
Sharan, M, Kumar Yadav, A., Singh, M.P., Agarwal, P. & S. Nigam (1996). A mathematical model for the dispersion of air pollutants in low wind conditions. Atmospheric Environment, 30(8), 1209-1220. https://doi.org/10.1016/1352-2310(95)00442-4
Todts, W. (Dir.) (2018). Transport & Environment. European Federation for Transport and Environment AISBL.
Tong, Z., Chen, Y., Malkawi, A., Adamkiewicz, G., & Spengler, J. D. (2016). Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Environment International, 89-90, 138–146. https://doi.org/10.1016/j.envint.2016.01.016
Trinh, T. T., Trinh, T. T., Le, T. T., Nguyen, T. D. H., & Tu, B. M. (2018). Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environmental Geochemistry and Health, 41(2), 929–937. https://doi.org/10.1007/s10653-018-0190-0
Vidal Rojas, R. (2002). Fragmentation de la ville et nouveaux modes de composition urbaine. Paris: L’Harmattan.